{"title":"抑制 FERMT1 可诱导胶质瘤癌细胞的抗肿瘤作用并降低其干性。","authors":"Zhigang Pan, Chuhan Ke, Hanlin Zheng, Xiumei Guo, Wen Gao, Xinyue Huang, Chunhui Chen, Yu Xiong, Shuni Zheng, Feng Zheng, Weipeng Hu","doi":"10.1007/s00432-024-05859-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Glioma is a leading cause of mortality worldwide, its recurrence poses a major challenge in achieving effective treatment outcomes. Cancer stem cells (CSCs) have emerged as key contributors to tumor relapse and chemotherapy resistance, making them attractive targets for glioma cancer therapy. This study investigated the potential of FERMT1 as a prognostic biomarker and its role in regulating stemness through cell cycle in glioma.</p><p><strong>Methods: </strong>Using data from TCGA-GBM, GSE4290, GSE50161 and GSE147352 for analysis of FERMT1 expression in glioma tissues. Then, the effects of FERMT1 knockdown on cell cycle, proliferation, sphere formation ability, invasion and migration were investigated. The influences of FERMT1 on expression of glycolysis-related proteins and levels of ATP, glucose, lactate and G6PDH were also explored. Furthermore, the effects of FERMT1 knockdown on cellular metabolism were evidenced.</p><p><strong>Results: </strong>Significant upregulation of FERMT1 in glioma tissues was observed. Silencing FERMT1 not only affected the cell cycle but also led to a notable reduction in proliferation, invasion and migration. The expression of glycolysis-associated proteins including GLUT1, GLUT3, GLUT4, and SCO2 were reduced by FERMT1 knockdown, resulted in increased ATP and glucose as well as decreased lactic acid and G6PDH levels. FERMT1 knockdown also inhibited cellular metabolism. Moreover, FERMT1 knockdown significantly reduced sphere diameter, along with inhibiting the expression of transcription factors associated with stemness in glioma cells.</p><p><strong>Conclusion: </strong>These findings demonstrated that FERMT1 could be an ideal target for the advancement of innovative strategies against glioma treatment via modulating cellular process involved in stemness regulation and metabolism.</p>","PeriodicalId":15118,"journal":{"name":"Journal of Cancer Research and Clinical Oncology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11231014/pdf/","citationCount":"0","resultStr":"{\"title\":\"FERMT1 suppression induces anti-tumor effects and reduces stemness in glioma cancer cells.\",\"authors\":\"Zhigang Pan, Chuhan Ke, Hanlin Zheng, Xiumei Guo, Wen Gao, Xinyue Huang, Chunhui Chen, Yu Xiong, Shuni Zheng, Feng Zheng, Weipeng Hu\",\"doi\":\"10.1007/s00432-024-05859-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Glioma is a leading cause of mortality worldwide, its recurrence poses a major challenge in achieving effective treatment outcomes. Cancer stem cells (CSCs) have emerged as key contributors to tumor relapse and chemotherapy resistance, making them attractive targets for glioma cancer therapy. This study investigated the potential of FERMT1 as a prognostic biomarker and its role in regulating stemness through cell cycle in glioma.</p><p><strong>Methods: </strong>Using data from TCGA-GBM, GSE4290, GSE50161 and GSE147352 for analysis of FERMT1 expression in glioma tissues. Then, the effects of FERMT1 knockdown on cell cycle, proliferation, sphere formation ability, invasion and migration were investigated. The influences of FERMT1 on expression of glycolysis-related proteins and levels of ATP, glucose, lactate and G6PDH were also explored. Furthermore, the effects of FERMT1 knockdown on cellular metabolism were evidenced.</p><p><strong>Results: </strong>Significant upregulation of FERMT1 in glioma tissues was observed. Silencing FERMT1 not only affected the cell cycle but also led to a notable reduction in proliferation, invasion and migration. The expression of glycolysis-associated proteins including GLUT1, GLUT3, GLUT4, and SCO2 were reduced by FERMT1 knockdown, resulted in increased ATP and glucose as well as decreased lactic acid and G6PDH levels. FERMT1 knockdown also inhibited cellular metabolism. Moreover, FERMT1 knockdown significantly reduced sphere diameter, along with inhibiting the expression of transcription factors associated with stemness in glioma cells.</p><p><strong>Conclusion: </strong>These findings demonstrated that FERMT1 could be an ideal target for the advancement of innovative strategies against glioma treatment via modulating cellular process involved in stemness regulation and metabolism.</p>\",\"PeriodicalId\":15118,\"journal\":{\"name\":\"Journal of Cancer Research and Clinical Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11231014/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cancer Research and Clinical Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00432-024-05859-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cancer Research and Clinical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00432-024-05859-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
FERMT1 suppression induces anti-tumor effects and reduces stemness in glioma cancer cells.
Objective: Glioma is a leading cause of mortality worldwide, its recurrence poses a major challenge in achieving effective treatment outcomes. Cancer stem cells (CSCs) have emerged as key contributors to tumor relapse and chemotherapy resistance, making them attractive targets for glioma cancer therapy. This study investigated the potential of FERMT1 as a prognostic biomarker and its role in regulating stemness through cell cycle in glioma.
Methods: Using data from TCGA-GBM, GSE4290, GSE50161 and GSE147352 for analysis of FERMT1 expression in glioma tissues. Then, the effects of FERMT1 knockdown on cell cycle, proliferation, sphere formation ability, invasion and migration were investigated. The influences of FERMT1 on expression of glycolysis-related proteins and levels of ATP, glucose, lactate and G6PDH were also explored. Furthermore, the effects of FERMT1 knockdown on cellular metabolism were evidenced.
Results: Significant upregulation of FERMT1 in glioma tissues was observed. Silencing FERMT1 not only affected the cell cycle but also led to a notable reduction in proliferation, invasion and migration. The expression of glycolysis-associated proteins including GLUT1, GLUT3, GLUT4, and SCO2 were reduced by FERMT1 knockdown, resulted in increased ATP and glucose as well as decreased lactic acid and G6PDH levels. FERMT1 knockdown also inhibited cellular metabolism. Moreover, FERMT1 knockdown significantly reduced sphere diameter, along with inhibiting the expression of transcription factors associated with stemness in glioma cells.
Conclusion: These findings demonstrated that FERMT1 could be an ideal target for the advancement of innovative strategies against glioma treatment via modulating cellular process involved in stemness regulation and metabolism.
期刊介绍:
The "Journal of Cancer Research and Clinical Oncology" publishes significant and up-to-date articles within the fields of experimental and clinical oncology. The journal, which is chiefly devoted to Original papers, also includes Reviews as well as Editorials and Guest editorials on current, controversial topics. The section Letters to the editors provides a forum for a rapid exchange of comments and information concerning previously published papers and topics of current interest. Meeting reports provide current information on the latest results presented at important congresses.
The following fields are covered: carcinogenesis - etiology, mechanisms; molecular biology; recent developments in tumor therapy; general diagnosis; laboratory diagnosis; diagnostic and experimental pathology; oncologic surgery; and epidemiology.