{"title":"尺寸、可变形性和设备布局对微流体中细胞运输的相互作用","authors":"Michael C Hood, Karl Gardner, Wei Li, Jifu Tan","doi":"10.1088/1361-648X/ad5ff3","DOIUrl":null,"url":null,"abstract":"<p><p>Microfluidics have been widely used for cell sorting and capture. In this work, numerical simulations of cell transport in microfluidic devices were studied considering cell sizes, deformability, and five different device designs. Among these five designs, deterministic lateral displacement device (DLD) and hyperuniform device (HU) performed better in promoting cell-micropost collision due to the continuously shifted micropost positions as compared with regular grid, staggered, and hexagonal layout designs. However, the grid and the hexagonal layouts showed best in differentiating cells by their size dependent velocity due to the size exclusion effect for cell transport in clear and straight paths in the flow direction. A systematic study of the velocity differentiation under different dimensionless groups was performed showing that the velocity difference is dominated by the micropost separation distance perpendicular to the direction of flow. Microfluidic experiments also confirmed the velocity differentiation results. The study can provide guiding principles for microfluidic design.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interplay of size, deformability, and device layout on cell transport in microfluidics.\",\"authors\":\"Michael C Hood, Karl Gardner, Wei Li, Jifu Tan\",\"doi\":\"10.1088/1361-648X/ad5ff3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microfluidics have been widely used for cell sorting and capture. In this work, numerical simulations of cell transport in microfluidic devices were studied considering cell sizes, deformability, and five different device designs. Among these five designs, deterministic lateral displacement device (DLD) and hyperuniform device (HU) performed better in promoting cell-micropost collision due to the continuously shifted micropost positions as compared with regular grid, staggered, and hexagonal layout designs. However, the grid and the hexagonal layouts showed best in differentiating cells by their size dependent velocity due to the size exclusion effect for cell transport in clear and straight paths in the flow direction. A systematic study of the velocity differentiation under different dimensionless groups was performed showing that the velocity difference is dominated by the micropost separation distance perpendicular to the direction of flow. Microfluidic experiments also confirmed the velocity differentiation results. The study can provide guiding principles for microfluidic design.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ad5ff3\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad5ff3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Interplay of size, deformability, and device layout on cell transport in microfluidics.
Microfluidics have been widely used for cell sorting and capture. In this work, numerical simulations of cell transport in microfluidic devices were studied considering cell sizes, deformability, and five different device designs. Among these five designs, deterministic lateral displacement device (DLD) and hyperuniform device (HU) performed better in promoting cell-micropost collision due to the continuously shifted micropost positions as compared with regular grid, staggered, and hexagonal layout designs. However, the grid and the hexagonal layouts showed best in differentiating cells by their size dependent velocity due to the size exclusion effect for cell transport in clear and straight paths in the flow direction. A systematic study of the velocity differentiation under different dimensionless groups was performed showing that the velocity difference is dominated by the micropost separation distance perpendicular to the direction of flow. Microfluidic experiments also confirmed the velocity differentiation results. The study can provide guiding principles for microfluidic design.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.