{"title":"Juçara 果实(Euterpe edulis Martius)提取物对 LPS 激活的 J774 巨噬细胞的保护作用","authors":"Mayara Schulz, Luciano Valdemiro Gonzaga, Ana Clara Nascimento Antunes, Tainá Lubschinski, Eduarda Talita Bramorski Mohr, Eduardo Monguilhott Dalmarco, Carolina Turnes Pasini Deolindo, Rodrigo Barcellos Hoff, Fábio Martinho Zambonim, Ana Carolina Oliveira Costa, Roseane Fett","doi":"10.1007/s11130-024-01204-8","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the anti-inflammatory effect of hydrophilic and lipophilic extracts from juçara fruits (Euterpe edulis Martius) through measurement of nitric oxide (NOx) and cytokines (IL-12p70, TNF-α, INF-γ, MCP-1, IL-6, and IL-10). J774 macrophages were stimulated with lipopolysaccharides (1 µg/mL) and treated with various concentrations (1-100 µg/mL) of juçara fruits extracts from crude extracts, and hexane, dichloromethane, ethyl acetate, and butanol fractions. Potential relationships between the phenolic composition of the extracts determined by LC-ESI-MS/MS and their anti-inflammatory capacity were also evaluated. Hexane and dichloromethane fractions inhibited NOx and IL-12p70 while increased IL-10. Hexane fractions also decreased IL-6 and IFN-γ production. Hexane and dichloromethane fractions showed a higher number of phenolic compounds (32 and 34, respectively) than the other extracts tested and were also the only ones that presented benzoic acid and pinocembrin. These results suggest juçara fruits compounds as potential anti-inflammatory agents, especially those of a more apolar nature.</p>","PeriodicalId":20092,"journal":{"name":"Plant Foods for Human Nutrition","volume":" ","pages":"677-684"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Protective Effect of Juçara Fruit (Euterpe edulis Martius) Extracts on LPS-Activated J774 Macrophages.\",\"authors\":\"Mayara Schulz, Luciano Valdemiro Gonzaga, Ana Clara Nascimento Antunes, Tainá Lubschinski, Eduarda Talita Bramorski Mohr, Eduardo Monguilhott Dalmarco, Carolina Turnes Pasini Deolindo, Rodrigo Barcellos Hoff, Fábio Martinho Zambonim, Ana Carolina Oliveira Costa, Roseane Fett\",\"doi\":\"10.1007/s11130-024-01204-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigated the anti-inflammatory effect of hydrophilic and lipophilic extracts from juçara fruits (Euterpe edulis Martius) through measurement of nitric oxide (NOx) and cytokines (IL-12p70, TNF-α, INF-γ, MCP-1, IL-6, and IL-10). J774 macrophages were stimulated with lipopolysaccharides (1 µg/mL) and treated with various concentrations (1-100 µg/mL) of juçara fruits extracts from crude extracts, and hexane, dichloromethane, ethyl acetate, and butanol fractions. Potential relationships between the phenolic composition of the extracts determined by LC-ESI-MS/MS and their anti-inflammatory capacity were also evaluated. Hexane and dichloromethane fractions inhibited NOx and IL-12p70 while increased IL-10. Hexane fractions also decreased IL-6 and IFN-γ production. Hexane and dichloromethane fractions showed a higher number of phenolic compounds (32 and 34, respectively) than the other extracts tested and were also the only ones that presented benzoic acid and pinocembrin. These results suggest juçara fruits compounds as potential anti-inflammatory agents, especially those of a more apolar nature.</p>\",\"PeriodicalId\":20092,\"journal\":{\"name\":\"Plant Foods for Human Nutrition\",\"volume\":\" \",\"pages\":\"677-684\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Foods for Human Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11130-024-01204-8\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Foods for Human Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11130-024-01204-8","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
The Protective Effect of Juçara Fruit (Euterpe edulis Martius) Extracts on LPS-Activated J774 Macrophages.
This study investigated the anti-inflammatory effect of hydrophilic and lipophilic extracts from juçara fruits (Euterpe edulis Martius) through measurement of nitric oxide (NOx) and cytokines (IL-12p70, TNF-α, INF-γ, MCP-1, IL-6, and IL-10). J774 macrophages were stimulated with lipopolysaccharides (1 µg/mL) and treated with various concentrations (1-100 µg/mL) of juçara fruits extracts from crude extracts, and hexane, dichloromethane, ethyl acetate, and butanol fractions. Potential relationships between the phenolic composition of the extracts determined by LC-ESI-MS/MS and their anti-inflammatory capacity were also evaluated. Hexane and dichloromethane fractions inhibited NOx and IL-12p70 while increased IL-10. Hexane fractions also decreased IL-6 and IFN-γ production. Hexane and dichloromethane fractions showed a higher number of phenolic compounds (32 and 34, respectively) than the other extracts tested and were also the only ones that presented benzoic acid and pinocembrin. These results suggest juçara fruits compounds as potential anti-inflammatory agents, especially those of a more apolar nature.
期刊介绍:
Plant Foods for Human Nutrition (previously Qualitas Plantarum) is an international journal that publishes reports of original research and critical reviews concerned with the improvement and evaluation of the nutritional quality of plant foods for humans, as they are influenced by:
- Biotechnology (all fields, including molecular biology and genetic engineering)
- Food science and technology
- Functional, nutraceutical or pharma foods
- Other nutrients and non-nutrients inherent in plant foods