Theresa M Casey, Kyrstin M Gouveia, Linda M Beckett, James F Markworth, Jacquelyn P Boerman
{"title":"基于产前肌肉储备和支链挥发性脂肪酸补充,不同奶牛背长肌的分子特征存在差异。","authors":"Theresa M Casey, Kyrstin M Gouveia, Linda M Beckett, James F Markworth, Jacquelyn P Boerman","doi":"10.1152/physiolgenomics.00060.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Dairy cattle with high (HM) versus low muscle (LM) reserves as determined by longissimus dorsi muscle depth (LDD) in late gestation exhibit differential muscle mobilization related to subsequent milk production. Moreover, branched-chain volatile fatty acid (BCVFA) supplementation increased blood glucose levels. We hypothesized that differences in HM and LM reflect distinct muscle metabolism and that BCVFA supplementation altered metabolic pathways. At 42 days before expected calving (BEC), Holstein dairy cows were enrolled in a 2 × 2 factorial study of diet and muscle reserves, by assignment to control (CON)- or BCVFA-supplemented diets and LDD of HM (>4.6 cm) or LM (≤4.6 cm) groups: HM-CON (<i>n</i> = 13), HM-BCVFA (<i>n</i> = 10), LM-CON (<i>n</i> = 9), and LM-BCVFA (<i>n</i> = 9). Longisumus dorsi muscle was biopsied at 21 days BEC, total RNA was isolated, and protein-coding gene expression was measured with RNA sequencing. Between HM and LM, 713 genes were differentially expressed and 481 between BCVFA and CON (<i>P</i> < 0.05). Transcriptional signatures indicated differential distribution of type II fibers between groups, with MYH1 greater in LM cattle and MYH2 greater in HM cattle (<i>P</i> < 0.05). Signatures of LM cattle relative to HM cattle indicated greater activation of autophagy, ubiquitin-proteasome, and Ca<sup>2+</sup>-calpain pathways. HM cattle displayed greater expression of genes that encode extracellular matrix proteins and factors that regulate their proteolysis and turnover. BCVFA modified transcriptomes by increasing expression of genes that regulate fatty acid degradation and flux of carbons into the tricarboxylic acid cycle as acetyl CoA. Molecular signatures support distinct metabolic strategies between LM and HM cattle and that BCVFA supplementation increased substrates for energy generation.<b>NEW & NOTEWORTHY</b> Muscle biopsies of the longissimus dorsi of prepartum dairy cattle indicate that molecular signatures support distinct metabolic strategies between low- and high-muscle cattle and that branched-chain volatile fatty acid supplementation increased substrates for energy generation.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"597-608"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular signatures of longissimus dorsi differ between dairy cattle based on prepartum muscle reserves and branched-chain volatile fatty acid supplementation.\",\"authors\":\"Theresa M Casey, Kyrstin M Gouveia, Linda M Beckett, James F Markworth, Jacquelyn P Boerman\",\"doi\":\"10.1152/physiolgenomics.00060.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dairy cattle with high (HM) versus low muscle (LM) reserves as determined by longissimus dorsi muscle depth (LDD) in late gestation exhibit differential muscle mobilization related to subsequent milk production. Moreover, branched-chain volatile fatty acid (BCVFA) supplementation increased blood glucose levels. We hypothesized that differences in HM and LM reflect distinct muscle metabolism and that BCVFA supplementation altered metabolic pathways. At 42 days before expected calving (BEC), Holstein dairy cows were enrolled in a 2 × 2 factorial study of diet and muscle reserves, by assignment to control (CON)- or BCVFA-supplemented diets and LDD of HM (>4.6 cm) or LM (≤4.6 cm) groups: HM-CON (<i>n</i> = 13), HM-BCVFA (<i>n</i> = 10), LM-CON (<i>n</i> = 9), and LM-BCVFA (<i>n</i> = 9). Longisumus dorsi muscle was biopsied at 21 days BEC, total RNA was isolated, and protein-coding gene expression was measured with RNA sequencing. Between HM and LM, 713 genes were differentially expressed and 481 between BCVFA and CON (<i>P</i> < 0.05). Transcriptional signatures indicated differential distribution of type II fibers between groups, with MYH1 greater in LM cattle and MYH2 greater in HM cattle (<i>P</i> < 0.05). Signatures of LM cattle relative to HM cattle indicated greater activation of autophagy, ubiquitin-proteasome, and Ca<sup>2+</sup>-calpain pathways. HM cattle displayed greater expression of genes that encode extracellular matrix proteins and factors that regulate their proteolysis and turnover. BCVFA modified transcriptomes by increasing expression of genes that regulate fatty acid degradation and flux of carbons into the tricarboxylic acid cycle as acetyl CoA. Molecular signatures support distinct metabolic strategies between LM and HM cattle and that BCVFA supplementation increased substrates for energy generation.<b>NEW & NOTEWORTHY</b> Muscle biopsies of the longissimus dorsi of prepartum dairy cattle indicate that molecular signatures support distinct metabolic strategies between low- and high-muscle cattle and that branched-chain volatile fatty acid supplementation increased substrates for energy generation.</p>\",\"PeriodicalId\":20129,\"journal\":{\"name\":\"Physiological genomics\",\"volume\":\" \",\"pages\":\"597-608\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/physiolgenomics.00060.2024\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00060.2024","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Molecular signatures of longissimus dorsi differ between dairy cattle based on prepartum muscle reserves and branched-chain volatile fatty acid supplementation.
Dairy cattle with high (HM) versus low muscle (LM) reserves as determined by longissimus dorsi muscle depth (LDD) in late gestation exhibit differential muscle mobilization related to subsequent milk production. Moreover, branched-chain volatile fatty acid (BCVFA) supplementation increased blood glucose levels. We hypothesized that differences in HM and LM reflect distinct muscle metabolism and that BCVFA supplementation altered metabolic pathways. At 42 days before expected calving (BEC), Holstein dairy cows were enrolled in a 2 × 2 factorial study of diet and muscle reserves, by assignment to control (CON)- or BCVFA-supplemented diets and LDD of HM (>4.6 cm) or LM (≤4.6 cm) groups: HM-CON (n = 13), HM-BCVFA (n = 10), LM-CON (n = 9), and LM-BCVFA (n = 9). Longisumus dorsi muscle was biopsied at 21 days BEC, total RNA was isolated, and protein-coding gene expression was measured with RNA sequencing. Between HM and LM, 713 genes were differentially expressed and 481 between BCVFA and CON (P < 0.05). Transcriptional signatures indicated differential distribution of type II fibers between groups, with MYH1 greater in LM cattle and MYH2 greater in HM cattle (P < 0.05). Signatures of LM cattle relative to HM cattle indicated greater activation of autophagy, ubiquitin-proteasome, and Ca2+-calpain pathways. HM cattle displayed greater expression of genes that encode extracellular matrix proteins and factors that regulate their proteolysis and turnover. BCVFA modified transcriptomes by increasing expression of genes that regulate fatty acid degradation and flux of carbons into the tricarboxylic acid cycle as acetyl CoA. Molecular signatures support distinct metabolic strategies between LM and HM cattle and that BCVFA supplementation increased substrates for energy generation.NEW & NOTEWORTHY Muscle biopsies of the longissimus dorsi of prepartum dairy cattle indicate that molecular signatures support distinct metabolic strategies between low- and high-muscle cattle and that branched-chain volatile fatty acid supplementation increased substrates for energy generation.
期刊介绍:
The Physiological Genomics publishes original papers, reviews and rapid reports in a wide area of research focused on uncovering the links between genes and physiology at all levels of biological organization. Articles on topics ranging from single genes to the whole genome and their links to the physiology of humans, any model organism, organ, tissue or cell are welcome. Areas of interest include complex polygenic traits preferably of importance to human health and gene-function relationships of disease processes. Specifically, the Journal has dedicated Sections focused on genome-wide association studies (GWAS) to function, cardiovascular, renal, metabolic and neurological systems, exercise physiology, pharmacogenomics, clinical, translational and genomics for precision medicine, comparative and statistical genomics and databases. For further details on research themes covered within these Sections, please refer to the descriptions given under each Section.