{"title":"TaqTth-hpRNA:特异性沉默致病性 mRNA 的新型紧凑型 RNA 靶向工具。","authors":"Chong Xu, Jiyanuo Cao, Huanran Qiang, Yu Liu, Jialin Wu, Qiudan Luo, Meng Wan, Yujie Wang, Peiliang Wang, Qian Cheng, Guohua Zhou, Jian Sima, Yongjian Guo, Shu Xu","doi":"10.1186/s13059-024-03326-3","DOIUrl":null,"url":null,"abstract":"<p><p>Pathogenic allele silencing is a promising treatment for genetic hereditary diseases. Here, we develop an RNA-cleaving tool, TaqTth-hpRNA, consisting of a small, chimeric TaqTth, and a hairpin RNA guiding probe. With a minimal flanking sequence-motif requirement, in vitro and in vivo studies show TaqTth-hpRNA cleaves RNA efficiently and specifically. In an Alzheimer's disease model, we demonstrate silencing of mutant APP<sup>swe</sup> mRNA without altering the wild-type APP mRNA. Notably, due to the compact size of TaqTth, we are able to combine with APOE2 overexpression in a single AAV vector, which results in stronger inhibition of pathologies.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"25 1","pages":"179"},"PeriodicalIF":12.3000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229350/pdf/","citationCount":"0","resultStr":"{\"title\":\"TaqTth-hpRNA: a novel compact RNA-targeting tool for specific silencing of pathogenic mRNA.\",\"authors\":\"Chong Xu, Jiyanuo Cao, Huanran Qiang, Yu Liu, Jialin Wu, Qiudan Luo, Meng Wan, Yujie Wang, Peiliang Wang, Qian Cheng, Guohua Zhou, Jian Sima, Yongjian Guo, Shu Xu\",\"doi\":\"10.1186/s13059-024-03326-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pathogenic allele silencing is a promising treatment for genetic hereditary diseases. Here, we develop an RNA-cleaving tool, TaqTth-hpRNA, consisting of a small, chimeric TaqTth, and a hairpin RNA guiding probe. With a minimal flanking sequence-motif requirement, in vitro and in vivo studies show TaqTth-hpRNA cleaves RNA efficiently and specifically. In an Alzheimer's disease model, we demonstrate silencing of mutant APP<sup>swe</sup> mRNA without altering the wild-type APP mRNA. Notably, due to the compact size of TaqTth, we are able to combine with APOE2 overexpression in a single AAV vector, which results in stronger inhibition of pathologies.</p>\",\"PeriodicalId\":48922,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"25 1\",\"pages\":\"179\"},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2024-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229350/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-024-03326-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03326-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
TaqTth-hpRNA: a novel compact RNA-targeting tool for specific silencing of pathogenic mRNA.
Pathogenic allele silencing is a promising treatment for genetic hereditary diseases. Here, we develop an RNA-cleaving tool, TaqTth-hpRNA, consisting of a small, chimeric TaqTth, and a hairpin RNA guiding probe. With a minimal flanking sequence-motif requirement, in vitro and in vivo studies show TaqTth-hpRNA cleaves RNA efficiently and specifically. In an Alzheimer's disease model, we demonstrate silencing of mutant APPswe mRNA without altering the wild-type APP mRNA. Notably, due to the compact size of TaqTth, we are able to combine with APOE2 overexpression in a single AAV vector, which results in stronger inhibition of pathologies.
期刊介绍:
Genome Biology is a leading research journal that focuses on the study of biology and biomedicine from a genomic and post-genomic standpoint. The journal consistently publishes outstanding research across various areas within these fields.
With an impressive impact factor of 12.3 (2022), Genome Biology has earned its place as the 3rd highest-ranked research journal in the Genetics and Heredity category, according to Thomson Reuters. Additionally, it is ranked 2nd among research journals in the Biotechnology and Applied Microbiology category. It is important to note that Genome Biology is the top-ranking open access journal in this category.
In summary, Genome Biology sets a high standard for scientific publications in the field, showcasing cutting-edge research and earning recognition among its peers.