Ahmed Nebli, Christian Schiffer, Meiqi Niu, Nicola Palomero-Gallagher, Katrin Amunts, Timo Dickscheid
{"title":"根据猕猴大脑的细胞结构图像建立皮质受体分布生成模型","authors":"Ahmed Nebli, Christian Schiffer, Meiqi Niu, Nicola Palomero-Gallagher, Katrin Amunts, Timo Dickscheid","doi":"10.1007/s12021-024-09673-7","DOIUrl":null,"url":null,"abstract":"<p><p>Neurotransmitter receptor densities are relevant for understanding the molecular architecture of brain regions. Quantitative in vitro receptor autoradiography, has been introduced to map neurotransmitter receptor distributions of brain areas. However, it is very time and cost-intensive, which makes it challenging to obtain whole-brain distributions. At the same time, high-throughput light microscopy and 3D reconstructions have enabled high-resolution brain maps capturing measures of cell density across the whole human brain. Aiming to bridge gaps in receptor measurements for building detailed whole-brain atlases, we study the feasibility of predicting realistic neurotransmitter density distributions from cell-body stainings. Specifically, we utilize conditional Generative Adversarial Networks (cGANs) to predict the density distributions of the M2 receptor of acetylcholine and the kainate receptor for glutamate in the macaque monkey's primary visual (V1) and motor cortex (M1), based on light microscopic scans of cell-body stained sections. Our model is trained on corresponding patches from aligned consecutive sections that display cell-body and receptor distributions, ensuring a mapping between the two modalities. Evaluations of our cGANs, both qualitative and quantitative, show their capability to predict receptor densities from cell-body stained sections while maintaining cortical features such as laminar thickness and curvature. Our work underscores the feasibility of cross-modality image translation problems to address data gaps in multi-modal brain atlases.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":" ","pages":"389-402"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329581/pdf/","citationCount":"0","resultStr":"{\"title\":\"Generative Modelling of Cortical Receptor Distributions from Cytoarchitectonic Images in the Macaque Brain.\",\"authors\":\"Ahmed Nebli, Christian Schiffer, Meiqi Niu, Nicola Palomero-Gallagher, Katrin Amunts, Timo Dickscheid\",\"doi\":\"10.1007/s12021-024-09673-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neurotransmitter receptor densities are relevant for understanding the molecular architecture of brain regions. Quantitative in vitro receptor autoradiography, has been introduced to map neurotransmitter receptor distributions of brain areas. However, it is very time and cost-intensive, which makes it challenging to obtain whole-brain distributions. At the same time, high-throughput light microscopy and 3D reconstructions have enabled high-resolution brain maps capturing measures of cell density across the whole human brain. Aiming to bridge gaps in receptor measurements for building detailed whole-brain atlases, we study the feasibility of predicting realistic neurotransmitter density distributions from cell-body stainings. Specifically, we utilize conditional Generative Adversarial Networks (cGANs) to predict the density distributions of the M2 receptor of acetylcholine and the kainate receptor for glutamate in the macaque monkey's primary visual (V1) and motor cortex (M1), based on light microscopic scans of cell-body stained sections. Our model is trained on corresponding patches from aligned consecutive sections that display cell-body and receptor distributions, ensuring a mapping between the two modalities. Evaluations of our cGANs, both qualitative and quantitative, show their capability to predict receptor densities from cell-body stained sections while maintaining cortical features such as laminar thickness and curvature. Our work underscores the feasibility of cross-modality image translation problems to address data gaps in multi-modal brain atlases.</p>\",\"PeriodicalId\":49761,\"journal\":{\"name\":\"Neuroinformatics\",\"volume\":\" \",\"pages\":\"389-402\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329581/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroinformatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12021-024-09673-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12021-024-09673-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Generative Modelling of Cortical Receptor Distributions from Cytoarchitectonic Images in the Macaque Brain.
Neurotransmitter receptor densities are relevant for understanding the molecular architecture of brain regions. Quantitative in vitro receptor autoradiography, has been introduced to map neurotransmitter receptor distributions of brain areas. However, it is very time and cost-intensive, which makes it challenging to obtain whole-brain distributions. At the same time, high-throughput light microscopy and 3D reconstructions have enabled high-resolution brain maps capturing measures of cell density across the whole human brain. Aiming to bridge gaps in receptor measurements for building detailed whole-brain atlases, we study the feasibility of predicting realistic neurotransmitter density distributions from cell-body stainings. Specifically, we utilize conditional Generative Adversarial Networks (cGANs) to predict the density distributions of the M2 receptor of acetylcholine and the kainate receptor for glutamate in the macaque monkey's primary visual (V1) and motor cortex (M1), based on light microscopic scans of cell-body stained sections. Our model is trained on corresponding patches from aligned consecutive sections that display cell-body and receptor distributions, ensuring a mapping between the two modalities. Evaluations of our cGANs, both qualitative and quantitative, show their capability to predict receptor densities from cell-body stained sections while maintaining cortical features such as laminar thickness and curvature. Our work underscores the feasibility of cross-modality image translation problems to address data gaps in multi-modal brain atlases.
期刊介绍:
Neuroinformatics publishes original articles and reviews with an emphasis on data structure and software tools related to analysis, modeling, integration, and sharing in all areas of neuroscience research. The editors particularly invite contributions on: (1) Theory and methodology, including discussions on ontologies, modeling approaches, database design, and meta-analyses; (2) Descriptions of developed databases and software tools, and of the methods for their distribution; (3) Relevant experimental results, such as reports accompanie by the release of massive data sets; (4) Computational simulations of models integrating and organizing complex data; and (5) Neuroengineering approaches, including hardware, robotics, and information theory studies.