Edward Xu, Morris Vanegas, Miguel Mireles, Artem Dementyev, Ashlyn McCann, Meryem Yücel, Stefan Carp, Qianqian Fang
{"title":"基于灵活电路的空间感知模块化脑部光学成像系统,可在自然环境中进行高密度测量。","authors":"Edward Xu, Morris Vanegas, Miguel Mireles, Artem Dementyev, Ashlyn McCann, Meryem Yücel, Stefan Carp, Qianqian Fang","doi":"10.1117/1.NPh.11.3.035002","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Functional near-infrared spectroscopy (fNIRS) presents an opportunity to study human brains in everyday activities and environments. However, achieving robust measurements under such dynamic conditions remains a significant challenge.</p><p><strong>Aim: </strong>The modular optical brain imaging (MOBI) system is designed to enhance optode-to-scalp coupling and provide a real-time probe three-dimensional (3D) shape estimation to improve the use of fNIRS in everyday conditions.</p><p><strong>Approach: </strong>The MOBI system utilizes a bendable and lightweight modular circuit-board design to enhance probe conformity to head surfaces and comfort for long-term wearability. Combined with automatic module connection recognition, the built-in orientation sensors on each module can be used to estimate optode 3D positions in real time to enable advanced tomographic data analysis and motion tracking.</p><p><strong>Results: </strong>Optical characterization of the MOBI detector reports a noise equivalence power of 8.9 and <math><mrow><mn>7.3</mn> <mtext> </mtext> <mi>pW</mi> <mo>/</mo> <msqrt><mrow><mi>Hz</mi></mrow> </msqrt> </mrow> </math> at 735 and 850 nm, respectively, with a dynamic range of 88 dB. The 3D optode shape acquisition yields an average error of 4.2 mm across 25 optodes in a phantom test compared with positions acquired from a digitizer. Results for initial <i>in vivo</i> validations, including a cuff occlusion and a finger-tapping test, are also provided.</p><p><strong>Conclusions: </strong>To the best of our knowledge, the MOBI system is the first modular fNIRS system featuring fully flexible circuit boards. The self-organizing module sensor network and automatic 3D optode position acquisition, combined with lightweight modules ( <math><mrow><mn>18</mn> <mtext> </mtext> <mi>g</mi> <mo>/</mo> <mtext>module</mtext></mrow> </math> ) and ergonomic designs, would greatly aid emerging explorations of brain function in naturalistic settings.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"11 3","pages":"035002"},"PeriodicalIF":4.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224775/pdf/","citationCount":"0","resultStr":"{\"title\":\"Flexible circuit-based spatially aware modular optical brain imaging system for high-density measurements in natural settings.\",\"authors\":\"Edward Xu, Morris Vanegas, Miguel Mireles, Artem Dementyev, Ashlyn McCann, Meryem Yücel, Stefan Carp, Qianqian Fang\",\"doi\":\"10.1117/1.NPh.11.3.035002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>Functional near-infrared spectroscopy (fNIRS) presents an opportunity to study human brains in everyday activities and environments. However, achieving robust measurements under such dynamic conditions remains a significant challenge.</p><p><strong>Aim: </strong>The modular optical brain imaging (MOBI) system is designed to enhance optode-to-scalp coupling and provide a real-time probe three-dimensional (3D) shape estimation to improve the use of fNIRS in everyday conditions.</p><p><strong>Approach: </strong>The MOBI system utilizes a bendable and lightweight modular circuit-board design to enhance probe conformity to head surfaces and comfort for long-term wearability. Combined with automatic module connection recognition, the built-in orientation sensors on each module can be used to estimate optode 3D positions in real time to enable advanced tomographic data analysis and motion tracking.</p><p><strong>Results: </strong>Optical characterization of the MOBI detector reports a noise equivalence power of 8.9 and <math><mrow><mn>7.3</mn> <mtext> </mtext> <mi>pW</mi> <mo>/</mo> <msqrt><mrow><mi>Hz</mi></mrow> </msqrt> </mrow> </math> at 735 and 850 nm, respectively, with a dynamic range of 88 dB. The 3D optode shape acquisition yields an average error of 4.2 mm across 25 optodes in a phantom test compared with positions acquired from a digitizer. Results for initial <i>in vivo</i> validations, including a cuff occlusion and a finger-tapping test, are also provided.</p><p><strong>Conclusions: </strong>To the best of our knowledge, the MOBI system is the first modular fNIRS system featuring fully flexible circuit boards. The self-organizing module sensor network and automatic 3D optode position acquisition, combined with lightweight modules ( <math><mrow><mn>18</mn> <mtext> </mtext> <mi>g</mi> <mo>/</mo> <mtext>module</mtext></mrow> </math> ) and ergonomic designs, would greatly aid emerging explorations of brain function in naturalistic settings.</p>\",\"PeriodicalId\":54335,\"journal\":{\"name\":\"Neurophotonics\",\"volume\":\"11 3\",\"pages\":\"035002\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224775/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurophotonics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.NPh.11.3.035002\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophotonics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.NPh.11.3.035002","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Flexible circuit-based spatially aware modular optical brain imaging system for high-density measurements in natural settings.
Significance: Functional near-infrared spectroscopy (fNIRS) presents an opportunity to study human brains in everyday activities and environments. However, achieving robust measurements under such dynamic conditions remains a significant challenge.
Aim: The modular optical brain imaging (MOBI) system is designed to enhance optode-to-scalp coupling and provide a real-time probe three-dimensional (3D) shape estimation to improve the use of fNIRS in everyday conditions.
Approach: The MOBI system utilizes a bendable and lightweight modular circuit-board design to enhance probe conformity to head surfaces and comfort for long-term wearability. Combined with automatic module connection recognition, the built-in orientation sensors on each module can be used to estimate optode 3D positions in real time to enable advanced tomographic data analysis and motion tracking.
Results: Optical characterization of the MOBI detector reports a noise equivalence power of 8.9 and at 735 and 850 nm, respectively, with a dynamic range of 88 dB. The 3D optode shape acquisition yields an average error of 4.2 mm across 25 optodes in a phantom test compared with positions acquired from a digitizer. Results for initial in vivo validations, including a cuff occlusion and a finger-tapping test, are also provided.
Conclusions: To the best of our knowledge, the MOBI system is the first modular fNIRS system featuring fully flexible circuit boards. The self-organizing module sensor network and automatic 3D optode position acquisition, combined with lightweight modules ( ) and ergonomic designs, would greatly aid emerging explorations of brain function in naturalistic settings.
期刊介绍:
At the interface of optics and neuroscience, Neurophotonics is a peer-reviewed journal that covers advances in optical technology applicable to study of the brain and their impact on the basic and clinical neuroscience applications.