基于灵活电路的空间感知模块化脑部光学成像系统,可在自然环境中进行高密度测量。

IF 4.8 2区 医学 Q1 NEUROSCIENCES Neurophotonics Pub Date : 2024-07-01 Epub Date: 2024-07-05 DOI:10.1117/1.NPh.11.3.035002
Edward Xu, Morris Vanegas, Miguel Mireles, Artem Dementyev, Ashlyn McCann, Meryem Yücel, Stefan Carp, Qianqian Fang
{"title":"基于灵活电路的空间感知模块化脑部光学成像系统,可在自然环境中进行高密度测量。","authors":"Edward Xu, Morris Vanegas, Miguel Mireles, Artem Dementyev, Ashlyn McCann, Meryem Yücel, Stefan Carp, Qianqian Fang","doi":"10.1117/1.NPh.11.3.035002","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Functional near-infrared spectroscopy (fNIRS) presents an opportunity to study human brains in everyday activities and environments. However, achieving robust measurements under such dynamic conditions remains a significant challenge.</p><p><strong>Aim: </strong>The modular optical brain imaging (MOBI) system is designed to enhance optode-to-scalp coupling and provide a real-time probe three-dimensional (3D) shape estimation to improve the use of fNIRS in everyday conditions.</p><p><strong>Approach: </strong>The MOBI system utilizes a bendable and lightweight modular circuit-board design to enhance probe conformity to head surfaces and comfort for long-term wearability. Combined with automatic module connection recognition, the built-in orientation sensors on each module can be used to estimate optode 3D positions in real time to enable advanced tomographic data analysis and motion tracking.</p><p><strong>Results: </strong>Optical characterization of the MOBI detector reports a noise equivalence power of 8.9 and <math><mrow><mn>7.3</mn> <mtext>  </mtext> <mi>pW</mi> <mo>/</mo> <msqrt><mrow><mi>Hz</mi></mrow> </msqrt> </mrow> </math> at 735 and 850 nm, respectively, with a dynamic range of 88 dB. The 3D optode shape acquisition yields an average error of 4.2 mm across 25 optodes in a phantom test compared with positions acquired from a digitizer. Results for initial <i>in vivo</i> validations, including a cuff occlusion and a finger-tapping test, are also provided.</p><p><strong>Conclusions: </strong>To the best of our knowledge, the MOBI system is the first modular fNIRS system featuring fully flexible circuit boards. The self-organizing module sensor network and automatic 3D optode position acquisition, combined with lightweight modules ( <math><mrow><mn>18</mn> <mtext>  </mtext> <mi>g</mi> <mo>/</mo> <mtext>module</mtext></mrow> </math> ) and ergonomic designs, would greatly aid emerging explorations of brain function in naturalistic settings.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"11 3","pages":"035002"},"PeriodicalIF":4.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224775/pdf/","citationCount":"0","resultStr":"{\"title\":\"Flexible circuit-based spatially aware modular optical brain imaging system for high-density measurements in natural settings.\",\"authors\":\"Edward Xu, Morris Vanegas, Miguel Mireles, Artem Dementyev, Ashlyn McCann, Meryem Yücel, Stefan Carp, Qianqian Fang\",\"doi\":\"10.1117/1.NPh.11.3.035002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>Functional near-infrared spectroscopy (fNIRS) presents an opportunity to study human brains in everyday activities and environments. However, achieving robust measurements under such dynamic conditions remains a significant challenge.</p><p><strong>Aim: </strong>The modular optical brain imaging (MOBI) system is designed to enhance optode-to-scalp coupling and provide a real-time probe three-dimensional (3D) shape estimation to improve the use of fNIRS in everyday conditions.</p><p><strong>Approach: </strong>The MOBI system utilizes a bendable and lightweight modular circuit-board design to enhance probe conformity to head surfaces and comfort for long-term wearability. Combined with automatic module connection recognition, the built-in orientation sensors on each module can be used to estimate optode 3D positions in real time to enable advanced tomographic data analysis and motion tracking.</p><p><strong>Results: </strong>Optical characterization of the MOBI detector reports a noise equivalence power of 8.9 and <math><mrow><mn>7.3</mn> <mtext>  </mtext> <mi>pW</mi> <mo>/</mo> <msqrt><mrow><mi>Hz</mi></mrow> </msqrt> </mrow> </math> at 735 and 850 nm, respectively, with a dynamic range of 88 dB. The 3D optode shape acquisition yields an average error of 4.2 mm across 25 optodes in a phantom test compared with positions acquired from a digitizer. Results for initial <i>in vivo</i> validations, including a cuff occlusion and a finger-tapping test, are also provided.</p><p><strong>Conclusions: </strong>To the best of our knowledge, the MOBI system is the first modular fNIRS system featuring fully flexible circuit boards. The self-organizing module sensor network and automatic 3D optode position acquisition, combined with lightweight modules ( <math><mrow><mn>18</mn> <mtext>  </mtext> <mi>g</mi> <mo>/</mo> <mtext>module</mtext></mrow> </math> ) and ergonomic designs, would greatly aid emerging explorations of brain function in naturalistic settings.</p>\",\"PeriodicalId\":54335,\"journal\":{\"name\":\"Neurophotonics\",\"volume\":\"11 3\",\"pages\":\"035002\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224775/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurophotonics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.NPh.11.3.035002\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophotonics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.NPh.11.3.035002","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

意义重大:功能性近红外光谱(fNIRS)为研究日常活动和环境中的人类大脑提供了机会。目的:模块化脑光学成像(MOBI)系统旨在增强光电耦合,并提供实时探头三维(3D)形状估计,以改善 fNIRS 在日常条件下的应用:MOBI 系统采用可弯曲的轻型模块化电路板设计,以增强探头与头部表面的贴合度和长期佩戴的舒适性。结合自动模块连接识别功能,每个模块上的内置方向传感器可用于实时估算光学探头的三维位置,从而实现高级断层扫描数据分析和运动跟踪:MOBI 探测器的光学特性报告显示,在波长为 735 和 850 nm 时,噪声等效功率分别为 8.9 和 7.3 pW/Hz,动态范围为 88 dB。三维光节点形状采集与数字化仪采集的位置相比,在幻影测试中 25 个光节点的平均误差为 4.2 毫米。此外,还提供了初步的体内验证结果,包括袖带闭塞和手指敲击测试:据我们所知,MOBI 系统是首个采用完全灵活电路板的模块化 fNIRS 系统。自组织模块传感器网络和自动三维光极位置采集,加上轻巧的模块(18 克/模块)和符合人体工程学的设计,将大大有助于在自然环境中对大脑功能进行新的探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flexible circuit-based spatially aware modular optical brain imaging system for high-density measurements in natural settings.

Significance: Functional near-infrared spectroscopy (fNIRS) presents an opportunity to study human brains in everyday activities and environments. However, achieving robust measurements under such dynamic conditions remains a significant challenge.

Aim: The modular optical brain imaging (MOBI) system is designed to enhance optode-to-scalp coupling and provide a real-time probe three-dimensional (3D) shape estimation to improve the use of fNIRS in everyday conditions.

Approach: The MOBI system utilizes a bendable and lightweight modular circuit-board design to enhance probe conformity to head surfaces and comfort for long-term wearability. Combined with automatic module connection recognition, the built-in orientation sensors on each module can be used to estimate optode 3D positions in real time to enable advanced tomographic data analysis and motion tracking.

Results: Optical characterization of the MOBI detector reports a noise equivalence power of 8.9 and 7.3    pW / Hz at 735 and 850 nm, respectively, with a dynamic range of 88 dB. The 3D optode shape acquisition yields an average error of 4.2 mm across 25 optodes in a phantom test compared with positions acquired from a digitizer. Results for initial in vivo validations, including a cuff occlusion and a finger-tapping test, are also provided.

Conclusions: To the best of our knowledge, the MOBI system is the first modular fNIRS system featuring fully flexible circuit boards. The self-organizing module sensor network and automatic 3D optode position acquisition, combined with lightweight modules ( 18    g / module ) and ergonomic designs, would greatly aid emerging explorations of brain function in naturalistic settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurophotonics
Neurophotonics Neuroscience-Neuroscience (miscellaneous)
CiteScore
7.20
自引率
11.30%
发文量
114
审稿时长
21 weeks
期刊介绍: At the interface of optics and neuroscience, Neurophotonics is a peer-reviewed journal that covers advances in optical technology applicable to study of the brain and their impact on the basic and clinical neuroscience applications.
期刊最新文献
Viscocohesive hyaluronan gel enhances stability of intravital multiphoton imaging with subcellular resolution. Zika virus encephalitis causes transient reduction of functional cortical connectivity. Early changes in spatiotemporal dynamics of remapped circuits and global networks predict functional recovery after stroke in mice. Distribution of spine classes shows intra-neuronal dendritic heterogeneity in mouse cortex. Expansion microscopy reveals neural circuit organization in genetic animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1