锌在血管钙化中的作用

IF 1.6 Q3 FOOD SCIENCE & TECHNOLOGY Preventive Nutrition and Food Science Pub Date : 2024-06-30 DOI:10.3746/pnf.2024.29.2.118
Jae-Hee Kwon, Do-Kyun Kim, Young-Eun Cho, In-Sook Kwun
{"title":"锌在血管钙化中的作用","authors":"Jae-Hee Kwon, Do-Kyun Kim, Young-Eun Cho, In-Sook Kwun","doi":"10.3746/pnf.2024.29.2.118","DOIUrl":null,"url":null,"abstract":"<p><p>Although zinc's involvement in bone calcification is well-established, its role in vascular calcification, characterized by abnormal calcium and phosphorus deposition in soft tissues and a key aspect of various vascular diseases, including atherosclerosis, remains unclear. This review focuses on zinc's action in vascular smooth muscle cell (VSMC) calcification, including the vascular calcification mechanism. Accumulated research has indicated that zinc deficiency induces calcification in VSMCs and the aorta, primarily through apoptosis accompanied by a downregulation of smooth muscle cell markers. Moreover, zinc deficiency-induced vascular calcification operates independently of the action of alkaline phosphatase (ALP) activity, typically associated with osteogenic processes, but is partly regulated via inorganic phosphate transporter-1 (Pit-1). To date, research has shown that zinc regulates vascular calcification through a mechanism distinct from that of osteogenic calcification, providing insight into its dual effects on physiological and pathological calcification and thereby explaining the \"zinc paradox,\" wherein zinc simultaneously increases osteoblastic calcification and decreases VSMC calcification.</p>","PeriodicalId":20424,"journal":{"name":"Preventive Nutrition and Food Science","volume":"29 2","pages":"118-124"},"PeriodicalIF":1.6000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223917/pdf/","citationCount":"0","resultStr":"{\"title\":\"Zinc Action in Vascular Calcification.\",\"authors\":\"Jae-Hee Kwon, Do-Kyun Kim, Young-Eun Cho, In-Sook Kwun\",\"doi\":\"10.3746/pnf.2024.29.2.118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although zinc's involvement in bone calcification is well-established, its role in vascular calcification, characterized by abnormal calcium and phosphorus deposition in soft tissues and a key aspect of various vascular diseases, including atherosclerosis, remains unclear. This review focuses on zinc's action in vascular smooth muscle cell (VSMC) calcification, including the vascular calcification mechanism. Accumulated research has indicated that zinc deficiency induces calcification in VSMCs and the aorta, primarily through apoptosis accompanied by a downregulation of smooth muscle cell markers. Moreover, zinc deficiency-induced vascular calcification operates independently of the action of alkaline phosphatase (ALP) activity, typically associated with osteogenic processes, but is partly regulated via inorganic phosphate transporter-1 (Pit-1). To date, research has shown that zinc regulates vascular calcification through a mechanism distinct from that of osteogenic calcification, providing insight into its dual effects on physiological and pathological calcification and thereby explaining the \\\"zinc paradox,\\\" wherein zinc simultaneously increases osteoblastic calcification and decreases VSMC calcification.</p>\",\"PeriodicalId\":20424,\"journal\":{\"name\":\"Preventive Nutrition and Food Science\",\"volume\":\"29 2\",\"pages\":\"118-124\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223917/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Preventive Nutrition and Food Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3746/pnf.2024.29.2.118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preventive Nutrition and Food Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3746/pnf.2024.29.2.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

虽然锌在骨骼钙化中的作用已得到证实,但它在血管钙化中的作用仍不清楚,血管钙化的特点是钙和磷在软组织中的异常沉积,是包括动脉粥样硬化在内的各种血管疾病的一个关键方面。本综述将重点讨论锌在血管平滑肌细胞(VSMC)钙化中的作用,包括血管钙化机制。大量研究表明,缺锌会诱导血管平滑肌细胞(VSMC)和主动脉钙化,主要是通过细胞凋亡和平滑肌细胞标志物的下调。此外,缺锌诱导的血管钙化与碱性磷酸酶(ALP)活性的作用无关,后者通常与成骨过程有关,但部分受无机磷酸盐转运体-1(Pit-1)的调节。迄今为止的研究表明,锌调节血管钙化的机制不同于成骨钙化的机制,这使人们了解了锌对生理性和病理性钙化的双重作用,从而解释了 "锌悖论",即锌同时增加成骨细胞钙化和减少血管内皮细胞钙化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Zinc Action in Vascular Calcification.

Although zinc's involvement in bone calcification is well-established, its role in vascular calcification, characterized by abnormal calcium and phosphorus deposition in soft tissues and a key aspect of various vascular diseases, including atherosclerosis, remains unclear. This review focuses on zinc's action in vascular smooth muscle cell (VSMC) calcification, including the vascular calcification mechanism. Accumulated research has indicated that zinc deficiency induces calcification in VSMCs and the aorta, primarily through apoptosis accompanied by a downregulation of smooth muscle cell markers. Moreover, zinc deficiency-induced vascular calcification operates independently of the action of alkaline phosphatase (ALP) activity, typically associated with osteogenic processes, but is partly regulated via inorganic phosphate transporter-1 (Pit-1). To date, research has shown that zinc regulates vascular calcification through a mechanism distinct from that of osteogenic calcification, providing insight into its dual effects on physiological and pathological calcification and thereby explaining the "zinc paradox," wherein zinc simultaneously increases osteoblastic calcification and decreases VSMC calcification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Preventive Nutrition and Food Science
Preventive Nutrition and Food Science Agricultural and Biological Sciences-Food Science
CiteScore
3.40
自引率
0.00%
发文量
35
期刊最新文献
Antioxidant and Longevity-Related Properties of the Ethyl Acetate Fraction of Cnidium officinale Makino in Caenorhabditis elegans. Effect of Siegesbeckia glabrescens Extract on Foam Cell Formation in THP-1 Macrophages. Effects of Green Tea and Java Pepper Mixture on Gut Microbiome and Colonic MicroRNA-221/222 in Mice with Dextran Sulfate Sodium-Induced Colitis. Erratum to: "Standardized Combined Plant Extract, RUG-com, Reduces Bacterial Levels and Suppresses Acute and Chronic Inflammation in Balb/c Mice Infected with CagA+ Helicobacter pylori." Ethanolic Extract from Echinacea purpurea (L.) Moench Inhibits Influenza A/B and Respiratory Syncytial Virus Infection in vitro: Preventive Agent for Viral Respiratory Infections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1