从微观结构演化的角度揭示钛薄板在中尺度法向应力作用下延展性改善的机理

IF 9.4 1区 材料科学 Q1 ENGINEERING, MECHANICAL International Journal of Plasticity Pub Date : 2024-07-02 DOI:10.1016/j.ijplas.2024.104055
Haiyang Wang , Gang Chen , Peng Zhang , Chuanjie Wang
{"title":"从微观结构演化的角度揭示钛薄板在中尺度法向应力作用下延展性改善的机理","authors":"Haiyang Wang ,&nbsp;Gang Chen ,&nbsp;Peng Zhang ,&nbsp;Chuanjie Wang","doi":"10.1016/j.ijplas.2024.104055","DOIUrl":null,"url":null,"abstract":"<div><p>Improving the formability of sheet metal is a constant challenge in microforming. In this study, applying normal stresses to the specimen surface is found to be an effective method for improving the ductility of pure titanium sheets. This case only occurs when the normal stress is higher than a critical value. By characterizing the microstructure, it is found that the normal stress induces a change in the deformation mechanism, which improves the work-hardening rate and the capacity for homogeneous deformation. The plastic deformation mechanism of pure titanium thin sheets undergoes a transformation from exclusively slip-based to a multi-mechanistic mode that couples slip, twinning, and FCC phase transformation. Normal stress exacerbate the deformation of surface grains and inhibit surface roughening. Moreover, normal stress activates deformation twins and FCC phase transformation by increasing the Schmid factor of the associated twin/slip systems. FCC phases and deformation twins contribute to enhancing the work-hardening rate through mechanisms such as the dynamic Hall-Petch effect, reorientation texture hardening, and dislocation substructure strengthening. Moreover, they enhance the material's ductility by providing additional deformation modes to accommodate strain. By virtue of the coordinated action of various deformation mechanisms, a more uniform distribution of thickness strain is achieved. It delays onset of plastic instability and enhances the formability of thin sheets. Considering the changes in dislocation density induced by different microstructures, a modified model is constructed. Based on the dislocation density and the surface layer model, this model predicts the flow stress size effect, as well as changes in flow stress and work hardening rate induced by normal stress due to microstructure transformation. This work provides a complete understanding of the mechanical property response and microstructure evolution under normal stress. It also gives a feasible solution for improving the formability of titanium thin sheet in microforming.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revealing mechanism of ductility improvement of titanium thin sheet under normal stress at mesoscale from perspective of microstructure evolution\",\"authors\":\"Haiyang Wang ,&nbsp;Gang Chen ,&nbsp;Peng Zhang ,&nbsp;Chuanjie Wang\",\"doi\":\"10.1016/j.ijplas.2024.104055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Improving the formability of sheet metal is a constant challenge in microforming. In this study, applying normal stresses to the specimen surface is found to be an effective method for improving the ductility of pure titanium sheets. This case only occurs when the normal stress is higher than a critical value. By characterizing the microstructure, it is found that the normal stress induces a change in the deformation mechanism, which improves the work-hardening rate and the capacity for homogeneous deformation. The plastic deformation mechanism of pure titanium thin sheets undergoes a transformation from exclusively slip-based to a multi-mechanistic mode that couples slip, twinning, and FCC phase transformation. Normal stress exacerbate the deformation of surface grains and inhibit surface roughening. Moreover, normal stress activates deformation twins and FCC phase transformation by increasing the Schmid factor of the associated twin/slip systems. FCC phases and deformation twins contribute to enhancing the work-hardening rate through mechanisms such as the dynamic Hall-Petch effect, reorientation texture hardening, and dislocation substructure strengthening. Moreover, they enhance the material's ductility by providing additional deformation modes to accommodate strain. By virtue of the coordinated action of various deformation mechanisms, a more uniform distribution of thickness strain is achieved. It delays onset of plastic instability and enhances the formability of thin sheets. Considering the changes in dislocation density induced by different microstructures, a modified model is constructed. Based on the dislocation density and the surface layer model, this model predicts the flow stress size effect, as well as changes in flow stress and work hardening rate induced by normal stress due to microstructure transformation. This work provides a complete understanding of the mechanical property response and microstructure evolution under normal stress. It also gives a feasible solution for improving the formability of titanium thin sheet in microforming.</p></div>\",\"PeriodicalId\":340,\"journal\":{\"name\":\"International Journal of Plasticity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Plasticity\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0749641924001827\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641924001827","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

提高金属板材的成形性是微成形领域的一项长期挑战。本研究发现,在试样表面施加法向应力是提高纯钛板延展性的有效方法。只有当法向应力高于临界值时,才会出现这种情况。通过表征微观结构发现,法向应力会引起变形机制的改变,从而提高加工硬化率和均匀变形能力。纯钛薄板的塑性变形机制从完全基于滑移的模式转变为滑移、孪晶和 FCC 相变耦合的多机制模式。法向应力加剧了表面晶粒的变形,抑制了表面粗化。此外,法向应力通过增加相关孪晶/滑移系统的施密特因子,激活变形孪晶和催化裂化相变。FCC 相和变形孪晶通过动态霍尔-佩奇效应、重新定向纹理硬化和位错亚结构强化等机制,有助于提高加工硬化率。此外,它们还通过提供额外的变形模式来适应应变,从而增强了材料的延展性。在各种变形机制的协调作用下,厚度应变的分布更加均匀。这可以延迟塑性不稳定性的出现,并提高薄板的成型性。考虑到不同微结构引起的位错密度变化,我们构建了一个修正模型。基于位错密度和表面层模型,该模型预测了流动应力大小效应,以及由于微观结构转变引起的流动应力和法向应力引起的加工硬化率的变化。这项工作使人们对法向应力下的机械性能响应和微观结构演变有了全面的了解。它还为改善钛薄板在微成型中的成型性提供了可行的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Revealing mechanism of ductility improvement of titanium thin sheet under normal stress at mesoscale from perspective of microstructure evolution

Improving the formability of sheet metal is a constant challenge in microforming. In this study, applying normal stresses to the specimen surface is found to be an effective method for improving the ductility of pure titanium sheets. This case only occurs when the normal stress is higher than a critical value. By characterizing the microstructure, it is found that the normal stress induces a change in the deformation mechanism, which improves the work-hardening rate and the capacity for homogeneous deformation. The plastic deformation mechanism of pure titanium thin sheets undergoes a transformation from exclusively slip-based to a multi-mechanistic mode that couples slip, twinning, and FCC phase transformation. Normal stress exacerbate the deformation of surface grains and inhibit surface roughening. Moreover, normal stress activates deformation twins and FCC phase transformation by increasing the Schmid factor of the associated twin/slip systems. FCC phases and deformation twins contribute to enhancing the work-hardening rate through mechanisms such as the dynamic Hall-Petch effect, reorientation texture hardening, and dislocation substructure strengthening. Moreover, they enhance the material's ductility by providing additional deformation modes to accommodate strain. By virtue of the coordinated action of various deformation mechanisms, a more uniform distribution of thickness strain is achieved. It delays onset of plastic instability and enhances the formability of thin sheets. Considering the changes in dislocation density induced by different microstructures, a modified model is constructed. Based on the dislocation density and the surface layer model, this model predicts the flow stress size effect, as well as changes in flow stress and work hardening rate induced by normal stress due to microstructure transformation. This work provides a complete understanding of the mechanical property response and microstructure evolution under normal stress. It also gives a feasible solution for improving the formability of titanium thin sheet in microforming.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Plasticity
International Journal of Plasticity 工程技术-材料科学:综合
CiteScore
15.30
自引率
26.50%
发文量
256
审稿时长
46 days
期刊介绍: International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena. Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.
期刊最新文献
A variational framework for Cahn–Hilliard-type diffusion coupled with Allen–Cahn-type multi-phase transformations in elastic and dissipative solids Coupled cellular automata-crystal plasticity modeling of microstructure-sensitive damage and fracture behaviors in deformation of α-titanium sheets affected by grain size Tailoring multi-type nanoprecipitates in high-entropy alloys towards superior tensile properties at cryogenic temperatures Tailoring thickness debit for high-temperature fatigue resistance of Inconel 718 superalloy fabricated by laser powder bed fusion The dependence of Zener-Hollomon parameter on softening behavior and dynamic recrystallization mechanism of a biodegradable Zn-Cu-Mg alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1