利用多深度温度时间序列估算地下水垂直通量的时间模式:数值方法

IF 5.9 1区 地球科学 Q1 ENGINEERING, CIVIL Journal of Hydrology Pub Date : 2024-07-02 DOI:10.1016/j.jhydrol.2024.131623
Qiongying Liu , Shunyun Chen , Bo Zhou
{"title":"利用多深度温度时间序列估算地下水垂直通量的时间模式:数值方法","authors":"Qiongying Liu ,&nbsp;Shunyun Chen ,&nbsp;Bo Zhou","doi":"10.1016/j.jhydrol.2024.131623","DOIUrl":null,"url":null,"abstract":"<div><p>Heat has become an increasingly utilized hydrological tracer for quantifying groundwater flow due to its universal distribution and environmental friendliness. Estimating time-varying groundwater flux is of great significance for understanding the transient behavior of the groundwater system. Most heat tracing models for acquiring transient water flux were specially designed for the near-surface medium that rely on periodic temperature signals, but few can be applicable to deep groundwater flux estimates. Models estimating flux in deep aquifers usually assume constant flow velocity over time, which cannot delineate the temporal patterns of groundwater flow. Here, we propose a numerical approach for automatically quantifying transient vertical groundwater flux from temperature time series at multiple depths. The approach can be applied to deep as well as near-surface homogeneous and heterogeneous media with flexible boundary conditions. The accuracy of the approach is demonstrated through three synthetic experiments and one real case test using data from a field site. Our approach shows fine temporal resolution for rapidly changing flow under various conditions and accurate estimates for a wide range of flow velocities. We conduct analyses to investigate the influence of different strategies to give an initial temperature profile on flux estimates. The results highlight the necessity of accurately giving an initial temperature profile under transient conditions. This study improves the heat tracing approach for estimating time-varying water fluxes, especially in a deep well, which would be beneficial to monitoring and managing groundwater flows with the development of high-resolution temperature observation technology.</p></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating temporal patterns of vertical groundwater flux using multidepth temperature time series: A numerical method\",\"authors\":\"Qiongying Liu ,&nbsp;Shunyun Chen ,&nbsp;Bo Zhou\",\"doi\":\"10.1016/j.jhydrol.2024.131623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Heat has become an increasingly utilized hydrological tracer for quantifying groundwater flow due to its universal distribution and environmental friendliness. Estimating time-varying groundwater flux is of great significance for understanding the transient behavior of the groundwater system. Most heat tracing models for acquiring transient water flux were specially designed for the near-surface medium that rely on periodic temperature signals, but few can be applicable to deep groundwater flux estimates. Models estimating flux in deep aquifers usually assume constant flow velocity over time, which cannot delineate the temporal patterns of groundwater flow. Here, we propose a numerical approach for automatically quantifying transient vertical groundwater flux from temperature time series at multiple depths. The approach can be applied to deep as well as near-surface homogeneous and heterogeneous media with flexible boundary conditions. The accuracy of the approach is demonstrated through three synthetic experiments and one real case test using data from a field site. Our approach shows fine temporal resolution for rapidly changing flow under various conditions and accurate estimates for a wide range of flow velocities. We conduct analyses to investigate the influence of different strategies to give an initial temperature profile on flux estimates. The results highlight the necessity of accurately giving an initial temperature profile under transient conditions. This study improves the heat tracing approach for estimating time-varying water fluxes, especially in a deep well, which would be beneficial to monitoring and managing groundwater flows with the development of high-resolution temperature observation technology.</p></div>\",\"PeriodicalId\":362,\"journal\":{\"name\":\"Journal of Hydrology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022169424010199\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169424010199","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

由于热量的普遍分布和环境友好性,热量已成为量化地下水流的一种越来越常用的水文示踪剂。估算时变地下水通量对于了解地下水系统的瞬态行为具有重要意义。大多数获取瞬态水通量的热追踪模型都是专为近地表介质设计的,依赖于周期性的温度信号,但很少有模型能适用于深层地下水通量估算。估算深含水层通量的模型通常假定流速随时间恒定不变,这就无法划分地下水流动的时间模式。在此,我们提出了一种数值方法,可根据多个深度的温度时间序列自动量化瞬态垂直地下水通量。该方法可应用于深层以及具有灵活边界条件的近地表均质和异质介质。通过三个合成实验和一个使用现场数据的实际案例测试,证明了该方法的准确性。我们的方法对各种条件下瞬息万变的水流显示出精细的时间分辨率,并能对各种流速进行精确估算。我们进行了分析,以研究不同的初始温度曲线给出策略对流量估算的影响。结果表明,在瞬态条件下,有必要准确给出初始温度曲线。这项研究改进了用于估算时变水流量的热追踪方法,特别是在深井中,这将有利于随着高分辨率温度观测技术的发展对地下水流进行监测和管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimating temporal patterns of vertical groundwater flux using multidepth temperature time series: A numerical method

Heat has become an increasingly utilized hydrological tracer for quantifying groundwater flow due to its universal distribution and environmental friendliness. Estimating time-varying groundwater flux is of great significance for understanding the transient behavior of the groundwater system. Most heat tracing models for acquiring transient water flux were specially designed for the near-surface medium that rely on periodic temperature signals, but few can be applicable to deep groundwater flux estimates. Models estimating flux in deep aquifers usually assume constant flow velocity over time, which cannot delineate the temporal patterns of groundwater flow. Here, we propose a numerical approach for automatically quantifying transient vertical groundwater flux from temperature time series at multiple depths. The approach can be applied to deep as well as near-surface homogeneous and heterogeneous media with flexible boundary conditions. The accuracy of the approach is demonstrated through three synthetic experiments and one real case test using data from a field site. Our approach shows fine temporal resolution for rapidly changing flow under various conditions and accurate estimates for a wide range of flow velocities. We conduct analyses to investigate the influence of different strategies to give an initial temperature profile on flux estimates. The results highlight the necessity of accurately giving an initial temperature profile under transient conditions. This study improves the heat tracing approach for estimating time-varying water fluxes, especially in a deep well, which would be beneficial to monitoring and managing groundwater flows with the development of high-resolution temperature observation technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydrology
Journal of Hydrology 地学-地球科学综合
CiteScore
11.00
自引率
12.50%
发文量
1309
审稿时长
7.5 months
期刊介绍: The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.
期刊最新文献
Dam-break flood hazard and risk assessment of large dam for emergency preparedness: A study of Ukai Dam, India Analytical model of contaminant advection, diffusion and degradation in capped sediments and sensitivity to flow and sediment properties High-resolution monitoring of soil infiltration using distributed fiber optic A hydro-geomorphologic assessment of flood generation potentiality in ungauged sub-basins and their prioritization based on traditional, statistical, MCDM and Nash-GIUH models of a tropical plateau-fringe River The causes of algal blooms exist significant scale effect in tributary of the Three Gorges Reservoir
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1