高分辨率模拟对降水集群统计的动态影响

IF 5.2 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Atmospheric Chemistry and Physics Pub Date : 2024-07-08 DOI:10.5194/egusphere-2024-2020
Claudia Christine Stephan, Bjorn Stevens
{"title":"高分辨率模拟对降水集群统计的动态影响","authors":"Claudia Christine Stephan, Bjorn Stevens","doi":"10.5194/egusphere-2024-2020","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Tropical precipitation cluster area and intensity distributions follow power laws, but the physical processes responsible for this macroscopic behavior remain unknown.We analyze global simulations at ten-kilometer horizontal resolution that are configured to have drastically varying degrees of realism, ranging from global radiative-convective equilibrium to fully realistic atmospheric simulations, to investigate how dynamics influence precipitation statistics. We find the presence of stirring and large-scale vertical overturning, as associated with substantial planetary and synoptic-scale variability, to be key for having cluster statistics approach power laws. The presence of such large-scale dynamics is reflected in steep vertical velocity spectra. Large-scale rising and sinking modulate the column water vapor and temperature field, leading to a heterogeneous distribution of moist and dry patches and regions of strong mass flux, in which large precipitation clusters form. Our findings suggest that power laws in Earth’s precipitation cluster statistics stem from the robust power laws of atmospheric motions.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"55 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical imprints on precipitation cluster statistics across a hierarchy of high-resolution simulations\",\"authors\":\"Claudia Christine Stephan, Bjorn Stevens\",\"doi\":\"10.5194/egusphere-2024-2020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> Tropical precipitation cluster area and intensity distributions follow power laws, but the physical processes responsible for this macroscopic behavior remain unknown.We analyze global simulations at ten-kilometer horizontal resolution that are configured to have drastically varying degrees of realism, ranging from global radiative-convective equilibrium to fully realistic atmospheric simulations, to investigate how dynamics influence precipitation statistics. We find the presence of stirring and large-scale vertical overturning, as associated with substantial planetary and synoptic-scale variability, to be key for having cluster statistics approach power laws. The presence of such large-scale dynamics is reflected in steep vertical velocity spectra. Large-scale rising and sinking modulate the column water vapor and temperature field, leading to a heterogeneous distribution of moist and dry patches and regions of strong mass flux, in which large precipitation clusters form. Our findings suggest that power laws in Earth’s precipitation cluster statistics stem from the robust power laws of atmospheric motions.\",\"PeriodicalId\":8611,\"journal\":{\"name\":\"Atmospheric Chemistry and Physics\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Chemistry and Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/egusphere-2024-2020\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Chemistry and Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-2020","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要。热带降水团的面积和强度分布遵循幂律,但导致这种宏观行为的物理过程仍然未知。我们分析了水平分辨率为十公里的全球模拟,这些模拟的配置具有极大的不同真实度,从全球辐射对流平衡到完全真实的大气模拟,以研究动力学如何影响降水统计。我们发现,搅动和大尺度垂直翻转的存在与大量行星和同步尺度变率有关,是集群统计数据接近幂律的关键。陡峭的垂直速度谱反映了这种大尺度动力的存在。大尺度的上升和下沉会调节水汽柱和温度场,导致湿润和干燥斑块的异质分布以及强质量通量区域,在这些区域会形成大型降水团。我们的研究结果表明,地球降水团统计中的幂律源于大气运动的强幂律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamical imprints on precipitation cluster statistics across a hierarchy of high-resolution simulations
Abstract. Tropical precipitation cluster area and intensity distributions follow power laws, but the physical processes responsible for this macroscopic behavior remain unknown.We analyze global simulations at ten-kilometer horizontal resolution that are configured to have drastically varying degrees of realism, ranging from global radiative-convective equilibrium to fully realistic atmospheric simulations, to investigate how dynamics influence precipitation statistics. We find the presence of stirring and large-scale vertical overturning, as associated with substantial planetary and synoptic-scale variability, to be key for having cluster statistics approach power laws. The presence of such large-scale dynamics is reflected in steep vertical velocity spectra. Large-scale rising and sinking modulate the column water vapor and temperature field, leading to a heterogeneous distribution of moist and dry patches and regions of strong mass flux, in which large precipitation clusters form. Our findings suggest that power laws in Earth’s precipitation cluster statistics stem from the robust power laws of atmospheric motions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Chemistry and Physics
Atmospheric Chemistry and Physics 地学-气象与大气科学
CiteScore
10.70
自引率
20.60%
发文量
702
审稿时长
6 months
期刊介绍: Atmospheric Chemistry and Physics (ACP) is a not-for-profit international scientific journal dedicated to the publication and public discussion of high-quality studies investigating the Earth''s atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere, and mesosphere. The main subject areas comprise atmospheric modelling, field measurements, remote sensing, and laboratory studies of gases, aerosols, clouds and precipitation, isotopes, radiation, dynamics, biosphere interactions, and hydrosphere interactions. The journal scope is focused on studies with general implications for atmospheric science rather than investigations that are primarily of local or technical interest.
期刊最新文献
Diverse sources and aging change the mixing state and ice nucleation properties of aerosol particles over the western Pacific and Southern Ocean Identifying decadal trends in deweathered concentrations of criteria air pollutants in Canadian urban atmospheres with machine learning approaches The water-insoluble organic carbon in PM2.5 of typical Chinese urban areas: light-absorbing properties, potential sources, radiative forcing effects, and a possible light-absorbing continuum Using a region-specific ice-nucleating particle parameterization improves the representation of Arctic clouds in a global climate model Evaluation of modelled versus observed non-methane volatile organic compounds at European Monitoring and Evaluation Programme sites in Europe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1