属性原型指导下的迭代场景图,用于生成可解释的放射学报告。

Ke Zhang, Yan Yang, Jun Yu, Jianping Fan, Hanliang Jiang, Qingming Huang, Weidong Han
{"title":"属性原型指导下的迭代场景图,用于生成可解释的放射学报告。","authors":"Ke Zhang, Yan Yang, Jun Yu, Jianping Fan, Hanliang Jiang, Qingming Huang, Weidong Han","doi":"10.1109/TMI.2024.3424505","DOIUrl":null,"url":null,"abstract":"<p><p>The potential of automated radiology report generation in alleviating the time-consuming tasks of radiologists is increasingly being recognized in medical practice. Existing report generation methods have evolved from using image-level features to the latest approach of utilizing anatomical regions, significantly enhancing interpretability. However, directly and simplistically using region features for report generation compromises the capability of relation reasoning and overlooks the common attributes potentially shared across regions. To address these limitations, we propose a novel region-based Attribute Prototype-guided Iterative Scene Graph generation framework (AP-ISG) for report generation, utilizing scene graph generation as an auxiliary task to further enhance interpretability and relational reasoning capability. The core components of AP-ISG are the Iterative Scene Graph Generation (ISGG) module and the Attribute Prototype-guided Learning (APL) module. Specifically, ISSG employs an autoregressive scheme for structural edge reasoning and a contextualization mechanism for relational reasoning. APL enhances intra-prototype matching and reduces inter-prototype semantic overlap in the visual space to fully model the potential attribute commonalities among regions. Extensive experiments on the MIMIC-CXR with Chest ImaGenome datasets demonstrate the superiority of AP-ISG across multiple metrics.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attribute Prototype-guided Iterative Scene Graph for Explainable Radiology Report Generation.\",\"authors\":\"Ke Zhang, Yan Yang, Jun Yu, Jianping Fan, Hanliang Jiang, Qingming Huang, Weidong Han\",\"doi\":\"10.1109/TMI.2024.3424505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The potential of automated radiology report generation in alleviating the time-consuming tasks of radiologists is increasingly being recognized in medical practice. Existing report generation methods have evolved from using image-level features to the latest approach of utilizing anatomical regions, significantly enhancing interpretability. However, directly and simplistically using region features for report generation compromises the capability of relation reasoning and overlooks the common attributes potentially shared across regions. To address these limitations, we propose a novel region-based Attribute Prototype-guided Iterative Scene Graph generation framework (AP-ISG) for report generation, utilizing scene graph generation as an auxiliary task to further enhance interpretability and relational reasoning capability. The core components of AP-ISG are the Iterative Scene Graph Generation (ISGG) module and the Attribute Prototype-guided Learning (APL) module. Specifically, ISSG employs an autoregressive scheme for structural edge reasoning and a contextualization mechanism for relational reasoning. APL enhances intra-prototype matching and reduces inter-prototype semantic overlap in the visual space to fully model the potential attribute commonalities among regions. Extensive experiments on the MIMIC-CXR with Chest ImaGenome datasets demonstrate the superiority of AP-ISG across multiple metrics.</p>\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TMI.2024.3424505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2024.3424505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在医疗实践中,人们越来越认识到自动生成放射报告在减轻放射医师耗时工作方面的潜力。现有的报告生成方法已从使用图像级特征发展到最新的利用解剖区域的方法,大大提高了可解释性。然而,直接简单地使用区域特征生成报告,会损害关系推理的能力,并忽略区域之间可能共享的共同属性。为了解决这些局限性,我们提出了一种新颖的基于区域属性原型引导的迭代场景图生成框架(AP-ISG)来生成报告,利用场景图生成作为辅助任务,进一步提高可解释性和关系推理能力。AP-ISG 的核心组件是迭代场景图生成(ISSG)模块和属性原型指导学习(APL)模块。具体来说,ISSG 采用自回归方案进行结构边缘推理,并采用上下文机制进行关系推理。APL 增强了视觉空间中的原型内匹配,减少了原型间的语义重叠,从而为区域间潜在的属性共性建立了完整的模型。利用胸部 ImaGenome 数据集在 MIMIC-CXR 上进行的大量实验证明了 AP-ISG 在多个指标上的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Attribute Prototype-guided Iterative Scene Graph for Explainable Radiology Report Generation.

The potential of automated radiology report generation in alleviating the time-consuming tasks of radiologists is increasingly being recognized in medical practice. Existing report generation methods have evolved from using image-level features to the latest approach of utilizing anatomical regions, significantly enhancing interpretability. However, directly and simplistically using region features for report generation compromises the capability of relation reasoning and overlooks the common attributes potentially shared across regions. To address these limitations, we propose a novel region-based Attribute Prototype-guided Iterative Scene Graph generation framework (AP-ISG) for report generation, utilizing scene graph generation as an auxiliary task to further enhance interpretability and relational reasoning capability. The core components of AP-ISG are the Iterative Scene Graph Generation (ISGG) module and the Attribute Prototype-guided Learning (APL) module. Specifically, ISSG employs an autoregressive scheme for structural edge reasoning and a contextualization mechanism for relational reasoning. APL enhances intra-prototype matching and reduces inter-prototype semantic overlap in the visual space to fully model the potential attribute commonalities among regions. Extensive experiments on the MIMIC-CXR with Chest ImaGenome datasets demonstrate the superiority of AP-ISG across multiple metrics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Building a Synthetic Vascular Model: Evaluation in an Intracranial Aneurysms Detection Scenario. FAMF-Net: Feature Alignment Mutual Attention Fusion with Region Awareness for Breast Cancer Diagnosis via Imbalanced Data. Table of Contents Corrections to “Contrastive Graph Pooling for Explainable Classification of Brain Networks” Multi-Center Fetal Brain Tissue Annotation (FeTA) Challenge 2022 Results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1