最近航运业二氧化硫排放量的减少对地表温度的影响较弱,其量化受到内部变异性的影响

IF 5.2 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Atmospheric Chemistry and Physics Pub Date : 2024-07-09 DOI:10.5194/egusphere-2024-1946
Duncan Watson-Parris, Laura J. Wilcox, Camilla W. Stjern, Robert J. Allen, Geeta Persad, Massimo A. Bollasina, Annica M. L. Ekman, Carley E. Iles, Manoj Joshi, Marianne T. Lund, Daniel McCoy, Daniel Westervelt, Andrew Williams, Bjørn H. Samset
{"title":"最近航运业二氧化硫排放量的减少对地表温度的影响较弱,其量化受到内部变异性的影响","authors":"Duncan Watson-Parris, Laura J. Wilcox, Camilla W. Stjern, Robert J. Allen, Geeta Persad, Massimo A. Bollasina, Annica M. L. Ekman, Carley E. Iles, Manoj Joshi, Marianne T. Lund, Daniel McCoy, Daniel Westervelt, Andrew Williams, Bjørn H. Samset","doi":"10.5194/egusphere-2024-1946","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> In 2020 the International Maritime Organization (IMO) implemented strict new regulations on the emissions of sulphate aerosol from the world's shipping fleet. This can be expected to lead to a reduction in aerosol-driven cooling, unmasking a portion of greenhouse gas warming. The magnitude of the effect is uncertain, however, due to the large remaining uncertainties in the climate response to aerosols. Here, we investigate this question using an 18-member ensemble of fully coupled climate simulations evenly sampling key modes of climate variability with the NCAR CESM2 model. We show that while there is a clear physical response of the climate system to the IMO regulations, including a surface temperature increase, we do not find global mean temperature influence that is significantly different from zero. The 20-year average global mean warming for 2020–2040 is +0.03 °C, with a 5–95 % confidence range of [-0.09, 0.19], reflecting the weakness of the perturbation relative to internal variability. We do, however, find a robust, non-zero regional temperature response in part of the North Atlantic. We also find that the maximum annual-mean ensemble-mean warming occurs around a decade after the perturbation in 2029, which means that the IMO regulations have likely had very limited influence on observed global warming to date. We further discuss our results in light of other, recent publications that have reached different conclusions. Overall, while the IMO regulations may contribute up to at 0.16 °C [-0.17, 0.52] to the global mean surface temperature in individual years during this decade, consistent with some early studies, such a response is unlikely to have been discernible above internal variability by the end of 2023 and is in fact consistent with zero throughout the 2020–2040 period.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"6 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak surface temperature effects of recent reductions in shipping SO2 emissions, with quantification confounded by internal variability\",\"authors\":\"Duncan Watson-Parris, Laura J. Wilcox, Camilla W. Stjern, Robert J. Allen, Geeta Persad, Massimo A. Bollasina, Annica M. L. Ekman, Carley E. Iles, Manoj Joshi, Marianne T. Lund, Daniel McCoy, Daniel Westervelt, Andrew Williams, Bjørn H. Samset\",\"doi\":\"10.5194/egusphere-2024-1946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> In 2020 the International Maritime Organization (IMO) implemented strict new regulations on the emissions of sulphate aerosol from the world's shipping fleet. This can be expected to lead to a reduction in aerosol-driven cooling, unmasking a portion of greenhouse gas warming. The magnitude of the effect is uncertain, however, due to the large remaining uncertainties in the climate response to aerosols. Here, we investigate this question using an 18-member ensemble of fully coupled climate simulations evenly sampling key modes of climate variability with the NCAR CESM2 model. We show that while there is a clear physical response of the climate system to the IMO regulations, including a surface temperature increase, we do not find global mean temperature influence that is significantly different from zero. The 20-year average global mean warming for 2020–2040 is +0.03 °C, with a 5–95 % confidence range of [-0.09, 0.19], reflecting the weakness of the perturbation relative to internal variability. We do, however, find a robust, non-zero regional temperature response in part of the North Atlantic. We also find that the maximum annual-mean ensemble-mean warming occurs around a decade after the perturbation in 2029, which means that the IMO regulations have likely had very limited influence on observed global warming to date. We further discuss our results in light of other, recent publications that have reached different conclusions. Overall, while the IMO regulations may contribute up to at 0.16 °C [-0.17, 0.52] to the global mean surface temperature in individual years during this decade, consistent with some early studies, such a response is unlikely to have been discernible above internal variability by the end of 2023 and is in fact consistent with zero throughout the 2020–2040 period.\",\"PeriodicalId\":8611,\"journal\":{\"name\":\"Atmospheric Chemistry and Physics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Chemistry and Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/egusphere-2024-1946\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Chemistry and Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-1946","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要2020 年,国际海事组织(IMO)对全球船队的硫酸盐气溶胶排放实施了严格的新规定。预计这将导致气溶胶驱动的冷却减少,从而揭开温室气体变暖的部分面纱。然而,由于气溶胶对气候的反应还存在很大的不确定性,因此这种影响的程度还不确定。在这里,我们利用 NCAR CESM2 模型对气候变率的关键模式进行均匀采样,并使用 18 个成员的完全耦合气候模拟集合来研究这个问题。我们的研究表明,虽然气候系统对《国际海事组织条例》有明显的物理响应,包括地表温度上升,但我们并没有发现全球平均温度的影响与零有显著差异。2020-2040 年的 20 年平均全球平均升温幅度为 +0.03 °C,5-95 % 的置信区间为 [-0.09, 0.19],这反映了相对于内部变率的微弱扰动。不过,我们确实发现北大西洋部分地区的区域温度响应强劲,不为零。我们还发现,最大年均集合平均升温发生在扰动发生后的十年左右,即 2029 年,这意味着国际海事组织的规定对迄今观测到的全球变暖的影响可能非常有限。我们还根据最近发表的其他文章进一步讨论了我们的结果,这些文章得出了不同的结论。总体而言,虽然国际海事组织条例可能在这十年间的个别年份对全球平均地表温度产生 0.16 °C[-0.17,0.52]的影响,这与一些早期研究一致,但到 2023 年底,这种影响不太可能高于内部变率,事实上,在整个 2020-2040 年期间,这种影响为零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Weak surface temperature effects of recent reductions in shipping SO2 emissions, with quantification confounded by internal variability
Abstract. In 2020 the International Maritime Organization (IMO) implemented strict new regulations on the emissions of sulphate aerosol from the world's shipping fleet. This can be expected to lead to a reduction in aerosol-driven cooling, unmasking a portion of greenhouse gas warming. The magnitude of the effect is uncertain, however, due to the large remaining uncertainties in the climate response to aerosols. Here, we investigate this question using an 18-member ensemble of fully coupled climate simulations evenly sampling key modes of climate variability with the NCAR CESM2 model. We show that while there is a clear physical response of the climate system to the IMO regulations, including a surface temperature increase, we do not find global mean temperature influence that is significantly different from zero. The 20-year average global mean warming for 2020–2040 is +0.03 °C, with a 5–95 % confidence range of [-0.09, 0.19], reflecting the weakness of the perturbation relative to internal variability. We do, however, find a robust, non-zero regional temperature response in part of the North Atlantic. We also find that the maximum annual-mean ensemble-mean warming occurs around a decade after the perturbation in 2029, which means that the IMO regulations have likely had very limited influence on observed global warming to date. We further discuss our results in light of other, recent publications that have reached different conclusions. Overall, while the IMO regulations may contribute up to at 0.16 °C [-0.17, 0.52] to the global mean surface temperature in individual years during this decade, consistent with some early studies, such a response is unlikely to have been discernible above internal variability by the end of 2023 and is in fact consistent with zero throughout the 2020–2040 period.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Chemistry and Physics
Atmospheric Chemistry and Physics 地学-气象与大气科学
CiteScore
10.70
自引率
20.60%
发文量
702
审稿时长
6 months
期刊介绍: Atmospheric Chemistry and Physics (ACP) is a not-for-profit international scientific journal dedicated to the publication and public discussion of high-quality studies investigating the Earth''s atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere, and mesosphere. The main subject areas comprise atmospheric modelling, field measurements, remote sensing, and laboratory studies of gases, aerosols, clouds and precipitation, isotopes, radiation, dynamics, biosphere interactions, and hydrosphere interactions. The journal scope is focused on studies with general implications for atmospheric science rather than investigations that are primarily of local or technical interest.
期刊最新文献
Diverse sources and aging change the mixing state and ice nucleation properties of aerosol particles over the western Pacific and Southern Ocean Identifying decadal trends in deweathered concentrations of criteria air pollutants in Canadian urban atmospheres with machine learning approaches The water-insoluble organic carbon in PM2.5 of typical Chinese urban areas: light-absorbing properties, potential sources, radiative forcing effects, and a possible light-absorbing continuum Using a region-specific ice-nucleating particle parameterization improves the representation of Arctic clouds in a global climate model Evaluation of modelled versus observed non-methane volatile organic compounds at European Monitoring and Evaluation Programme sites in Europe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1