Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Cosme A. O. B. Figueiredo, Ricardo A. Buriti, Hisao Takahashi, Delano Gobbi, Gabriel A. Giongo
{"title":"垂直传播重力波的动量通量特征","authors":"Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Cosme A. O. B. Figueiredo, Ricardo A. Buriti, Hisao Takahashi, Delano Gobbi, Gabriel A. Giongo","doi":"10.5194/egusphere-2024-1982","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Simultaneous observations of airglow intensity, rotational temperature, and wind data at São João do Cariri (36.31° W; 07.40° S) by Co-located photometer, all-sky imager, and meteor radar were used to study the characteristics of vertical propagating gravity waves (GWs). Using the photometer data, the phase progression of GWs with the same propagation period in the OI 557.7nm, O<sub>2</sub>, NaD-line, and OH (6-2) emission layers were then used to determine the upward or downward vertical propagation of the waves. The vertical phase speed and wavelength are estimated using the wave period and phase difference at different altitude. From the O<sub>2</sub> and OH (6-2) rotational temperatures, the total energy and the momentum flux of the downward propagating GWs were determined. For the upward propagating GW only the momentum flux and potential energy were estimated due to lack of observed wind. Further analysis of the momentum flux for each of the two events revealed that the momentum flux and potential energy of the downward propagating GWs increases with decreasing altitude. On the contrary, the GW momentum and energy of the upward propagating waves increases with increasing altitude. Thus, clearly demonstrating the transfer of momentum flux and energy from the source to the sink. This characteristic difference can be used to careful analysis the changes in GWs energy propagation due to reflection of non-primary GWs.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"31 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Momentum flux characteristics of vertical propagating Gravity Waves\",\"authors\":\"Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Cosme A. O. B. Figueiredo, Ricardo A. Buriti, Hisao Takahashi, Delano Gobbi, Gabriel A. Giongo\",\"doi\":\"10.5194/egusphere-2024-1982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> Simultaneous observations of airglow intensity, rotational temperature, and wind data at São João do Cariri (36.31° W; 07.40° S) by Co-located photometer, all-sky imager, and meteor radar were used to study the characteristics of vertical propagating gravity waves (GWs). Using the photometer data, the phase progression of GWs with the same propagation period in the OI 557.7nm, O<sub>2</sub>, NaD-line, and OH (6-2) emission layers were then used to determine the upward or downward vertical propagation of the waves. The vertical phase speed and wavelength are estimated using the wave period and phase difference at different altitude. From the O<sub>2</sub> and OH (6-2) rotational temperatures, the total energy and the momentum flux of the downward propagating GWs were determined. For the upward propagating GW only the momentum flux and potential energy were estimated due to lack of observed wind. Further analysis of the momentum flux for each of the two events revealed that the momentum flux and potential energy of the downward propagating GWs increases with decreasing altitude. On the contrary, the GW momentum and energy of the upward propagating waves increases with increasing altitude. Thus, clearly demonstrating the transfer of momentum flux and energy from the source to the sink. This characteristic difference can be used to careful analysis the changes in GWs energy propagation due to reflection of non-primary GWs.\",\"PeriodicalId\":8611,\"journal\":{\"name\":\"Atmospheric Chemistry and Physics\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Chemistry and Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/egusphere-2024-1982\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Chemistry and Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-1982","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
摘要利用共址光度计、全天空成像仪和流星雷达在 São João do Cariri(西经 36.31 度;南纬 07.40 度)同时观测到的气辉强度、旋转温度和风数据,研究了垂直传播重力波(GWs)的特征。利用光度计数据,在 OI 557.7nm、O2、NaD 线和 OH(6-2)发射层中对具有相同传播周期的重力波的相位变化进行分析,以确定重力波是向上还是向下垂直传播。利用不同高度的波周期和相位差估算垂直相速和波长。根据 O2 和 OH (6-2) 旋转温度,确定了向下传播的全球大气环流的总能量和动量通量。对于向上传播的全球大气环流,由于没有观测到风,只估算了动量通量和势能。对两个事件的动量通量的进一步分析表明,向下传播的全球大气风暴的动量通量和势能随着高度的降低而增加。相反,向上传播的全球定位系统的动量和能量则随着高度的增加而增加。因此,这清楚地表明了动量通量和能量从源向汇的转移。可以利用这一特征差异来仔细分析非初级全球定位系统反射导致的全球定位系统能量传播的变化。
Momentum flux characteristics of vertical propagating Gravity Waves
Abstract. Simultaneous observations of airglow intensity, rotational temperature, and wind data at São João do Cariri (36.31° W; 07.40° S) by Co-located photometer, all-sky imager, and meteor radar were used to study the characteristics of vertical propagating gravity waves (GWs). Using the photometer data, the phase progression of GWs with the same propagation period in the OI 557.7nm, O2, NaD-line, and OH (6-2) emission layers were then used to determine the upward or downward vertical propagation of the waves. The vertical phase speed and wavelength are estimated using the wave period and phase difference at different altitude. From the O2 and OH (6-2) rotational temperatures, the total energy and the momentum flux of the downward propagating GWs were determined. For the upward propagating GW only the momentum flux and potential energy were estimated due to lack of observed wind. Further analysis of the momentum flux for each of the two events revealed that the momentum flux and potential energy of the downward propagating GWs increases with decreasing altitude. On the contrary, the GW momentum and energy of the upward propagating waves increases with increasing altitude. Thus, clearly demonstrating the transfer of momentum flux and energy from the source to the sink. This characteristic difference can be used to careful analysis the changes in GWs energy propagation due to reflection of non-primary GWs.
期刊介绍:
Atmospheric Chemistry and Physics (ACP) is a not-for-profit international scientific journal dedicated to the publication and public discussion of high-quality studies investigating the Earth''s atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere, and mesosphere.
The main subject areas comprise atmospheric modelling, field measurements, remote sensing, and laboratory studies of gases, aerosols, clouds and precipitation, isotopes, radiation, dynamics, biosphere interactions, and hydrosphere interactions. The journal scope is focused on studies with general implications for atmospheric science rather than investigations that are primarily of local or technical interest.