对氧葡萄糖杆菌进行工程改造,使其能够高效地共同利用葡萄糖和山梨糖醇,一步法生物合成 2-酮-L-古洛糖醛酸

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING Bioresource Technology Pub Date : 2024-07-08 DOI:10.1016/j.biortech.2024.131098
{"title":"对氧葡萄糖杆菌进行工程改造,使其能够高效地共同利用葡萄糖和山梨糖醇,一步法生物合成 2-酮-L-古洛糖醛酸","authors":"","doi":"10.1016/j.biortech.2024.131098","DOIUrl":null,"url":null,"abstract":"<div><p>As the highest-demand vitamin, the development of a one-step vitamin C synthesis process has been slow for a long time. In previous research, a <em>Gluconobacter oxydans</em> strain (GKLG9) was constructed that can directly synthesize 2-keto-L-gulonic acid (2-KLG) from glucose, but carbon source utilization remained low. Therefore, this study first identified the gene <em>4kas</em> (4-keto-D-arabate synthase) to reduce the loss of extracellular carbon and inhibit the browning of fermentation broth. Then, promoter engineering was conducted to enhance the intracellular glucose transport pathway and concentrate intracellular glucose metabolism on the pentose phosphate pathway to provide more reducing power. Finally, by introducing the D-sorbitol pathway, the titer of 2-KLG was increased to 38.6 g/L within 60 h in a 5-L bioreactor, with a glucose-to-2-KLG conversion rate of about 46 %. This study is an important step in the development of single-bacterial one-step fermentation to produce 2-KLG.</p></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":null,"pages":null},"PeriodicalIF":9.7000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering Gluconbacter oxydans with efficient co-utilization of glucose and sorbitol for one-step biosynthesis of 2-keto-L-gulonic\",\"authors\":\"\",\"doi\":\"10.1016/j.biortech.2024.131098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As the highest-demand vitamin, the development of a one-step vitamin C synthesis process has been slow for a long time. In previous research, a <em>Gluconobacter oxydans</em> strain (GKLG9) was constructed that can directly synthesize 2-keto-L-gulonic acid (2-KLG) from glucose, but carbon source utilization remained low. Therefore, this study first identified the gene <em>4kas</em> (4-keto-D-arabate synthase) to reduce the loss of extracellular carbon and inhibit the browning of fermentation broth. Then, promoter engineering was conducted to enhance the intracellular glucose transport pathway and concentrate intracellular glucose metabolism on the pentose phosphate pathway to provide more reducing power. Finally, by introducing the D-sorbitol pathway, the titer of 2-KLG was increased to 38.6 g/L within 60 h in a 5-L bioreactor, with a glucose-to-2-KLG conversion rate of about 46 %. This study is an important step in the development of single-bacterial one-step fermentation to produce 2-KLG.</p></div>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960852424008022\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852424008022","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

作为需求量最大的维生素,一步法合成维生素 C 的工艺长期以来发展缓慢。在之前的研究中,构建了一株可直接从葡萄糖合成 2-Keto-L- 古洛糖酸(2-KLG)的菌株(GKLG9),但碳源利用率仍然较低。因此,本研究首先确定了减少胞外碳损失和抑制发酵液褐变的基因(4-酮-D-阿拉伯酸合成酶)。然后,通过启动子工程来增强细胞内葡萄糖转运途径,并将细胞内葡萄糖代谢集中在磷酸戊糖途径上,以提供更多的还原力。最后,通过引入 D-山梨醇途径,在 5 升生物反应器中,2-KLG 的滴度在 60 小时内提高到 38.6 克/升,葡萄糖到 2-KLG 的转化率约为 46%。这项研究为开发单菌一步发酵法生产 2-KLG 迈出了重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Engineering Gluconbacter oxydans with efficient co-utilization of glucose and sorbitol for one-step biosynthesis of 2-keto-L-gulonic

As the highest-demand vitamin, the development of a one-step vitamin C synthesis process has been slow for a long time. In previous research, a Gluconobacter oxydans strain (GKLG9) was constructed that can directly synthesize 2-keto-L-gulonic acid (2-KLG) from glucose, but carbon source utilization remained low. Therefore, this study first identified the gene 4kas (4-keto-D-arabate synthase) to reduce the loss of extracellular carbon and inhibit the browning of fermentation broth. Then, promoter engineering was conducted to enhance the intracellular glucose transport pathway and concentrate intracellular glucose metabolism on the pentose phosphate pathway to provide more reducing power. Finally, by introducing the D-sorbitol pathway, the titer of 2-KLG was increased to 38.6 g/L within 60 h in a 5-L bioreactor, with a glucose-to-2-KLG conversion rate of about 46 %. This study is an important step in the development of single-bacterial one-step fermentation to produce 2-KLG.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
期刊最新文献
Enhanced recovery of waste-born nutrients from sewage sludge ash and fish meal through fungal treatment: Mechanistic insights and impact of heavy metals Engineered Halomonas for production of gamma-aminobutyric acid and 2-pyrrolidone Antioxidants alleviated low-temperature stress in microalgae by modulating reactive oxygen species to improve lipid production and antioxidant defense. Biological methane potentials of food waste of different components: Methane yields, production kinetics, and element balance. Construction of a redox-coupled pathway co-metabolizing glucose and acetate for high-yield production of butyl butyrate in Escherichia coli.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1