将地表建模作为探索地中海果园可持续灌溉方法的工具

IF 4.6 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES Water Resources Research Pub Date : 2024-07-06 DOI:10.1029/2023wr036139
O. Dombrowski, C. Brogi, H.-J. Hendricks Franssen, V. Pisinaras, A. Panagopoulos, S. Swenson, H. Bogena
{"title":"将地表建模作为探索地中海果园可持续灌溉方法的工具","authors":"O. Dombrowski, C. Brogi, H.-J. Hendricks Franssen, V. Pisinaras, A. Panagopoulos, S. Swenson, H. Bogena","doi":"10.1029/2023wr036139","DOIUrl":null,"url":null,"abstract":"Irrigation strongly influences land-atmosphere processes from regional to global scale. Therefore, an accurate representation of irrigation is crucial to understand these interactions and address water resources issues. While irrigation schemes are increasingly integrated into land surface models, their evaluation and further development remains challenging due to data limitations. This study assessed the representation of field-scale irrigation using the Community Land Model version 5 (CLM5) through comparison of observed and simulated soil moisture, transpiration and crop yield. Irrigation was simulated by (a) adjusting the current irrigation routine and (b) by implementing a novel irrigation data stream that allows to directly use observed irrigation amounts and schedules. In a following step, the effect of different irrigation scenarios at the regional scale was simulated by using this novel data stream. At the plot scale, the novel irrigation data stream performed better in representing observed SM dynamics compared to the current irrigation routine. Nonetheless, simplifications in crop and irrigation representation and uncertainty in the relation between water stress and yield currently limit the ability of CLM5 for field-scale irrigation scheduling. Still, the simulations revealed valuable insights into model performance that can inform and improve the modeling beyond the field scale. At regional scale, the simulations identified irrigation priorities and potential water savings. Furthermore, application of LSMs such as CLM5 can help to study the effects of irrigation beyond water availability, for example, on energy fluxes and climate, thus providing a powerful tool to assess the broader implications of irrigation at larger scale.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Land Surface Modeling as a Tool to Explore Sustainable Irrigation Practices in Mediterranean Fruit Orchards\",\"authors\":\"O. Dombrowski, C. Brogi, H.-J. Hendricks Franssen, V. Pisinaras, A. Panagopoulos, S. Swenson, H. Bogena\",\"doi\":\"10.1029/2023wr036139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Irrigation strongly influences land-atmosphere processes from regional to global scale. Therefore, an accurate representation of irrigation is crucial to understand these interactions and address water resources issues. While irrigation schemes are increasingly integrated into land surface models, their evaluation and further development remains challenging due to data limitations. This study assessed the representation of field-scale irrigation using the Community Land Model version 5 (CLM5) through comparison of observed and simulated soil moisture, transpiration and crop yield. Irrigation was simulated by (a) adjusting the current irrigation routine and (b) by implementing a novel irrigation data stream that allows to directly use observed irrigation amounts and schedules. In a following step, the effect of different irrigation scenarios at the regional scale was simulated by using this novel data stream. At the plot scale, the novel irrigation data stream performed better in representing observed SM dynamics compared to the current irrigation routine. Nonetheless, simplifications in crop and irrigation representation and uncertainty in the relation between water stress and yield currently limit the ability of CLM5 for field-scale irrigation scheduling. Still, the simulations revealed valuable insights into model performance that can inform and improve the modeling beyond the field scale. At regional scale, the simulations identified irrigation priorities and potential water savings. Furthermore, application of LSMs such as CLM5 can help to study the effects of irrigation beyond water availability, for example, on energy fluxes and climate, thus providing a powerful tool to assess the broader implications of irrigation at larger scale.\",\"PeriodicalId\":23799,\"journal\":{\"name\":\"Water Resources Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2023wr036139\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023wr036139","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

灌溉对从区域到全球尺度的陆地-大气过程都有很大影响。因此,准确反映灌溉情况对于理解这些相互作用和解决水资源问题至关重要。虽然灌溉计划越来越多地被纳入地表模型,但由于数据的限制,对其进行评估和进一步开发仍具有挑战性。本研究通过比较观测和模拟的土壤水分、蒸腾作用和作物产量,评估了利用群落土地模型第 5 版(CLM5)对田间尺度灌溉的表示。模拟灌溉的方法包括:(a) 调整当前的灌溉程序;(b) 采用新的灌溉数据流,直接使用观测到的灌溉量和灌溉计划。下一步,利用该新型数据流模拟区域范围内不同灌溉方案的影响。在地块尺度上,与当前的灌溉程序相比,新型灌溉数据流在表现观测到的 SM 动态方面表现更好。然而,作物和灌溉表示的简化以及水胁迫与产量之间关系的不确定性目前限制了 CLM5 在田间尺度灌溉调度方面的能力。不过,模拟还是揭示了对模型性能的宝贵见解,可为田间尺度以外的建模提供信息并加以改进。在区域尺度上,模拟确定了灌溉重点和潜在节水量。此外,应用 CLM5 等 LSM 有助于研究灌溉对可用水量以外的影响,例如对能量通量和气候的影响,从而为评估更大规模灌溉的广泛影响提供了有力工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Land Surface Modeling as a Tool to Explore Sustainable Irrigation Practices in Mediterranean Fruit Orchards
Irrigation strongly influences land-atmosphere processes from regional to global scale. Therefore, an accurate representation of irrigation is crucial to understand these interactions and address water resources issues. While irrigation schemes are increasingly integrated into land surface models, their evaluation and further development remains challenging due to data limitations. This study assessed the representation of field-scale irrigation using the Community Land Model version 5 (CLM5) through comparison of observed and simulated soil moisture, transpiration and crop yield. Irrigation was simulated by (a) adjusting the current irrigation routine and (b) by implementing a novel irrigation data stream that allows to directly use observed irrigation amounts and schedules. In a following step, the effect of different irrigation scenarios at the regional scale was simulated by using this novel data stream. At the plot scale, the novel irrigation data stream performed better in representing observed SM dynamics compared to the current irrigation routine. Nonetheless, simplifications in crop and irrigation representation and uncertainty in the relation between water stress and yield currently limit the ability of CLM5 for field-scale irrigation scheduling. Still, the simulations revealed valuable insights into model performance that can inform and improve the modeling beyond the field scale. At regional scale, the simulations identified irrigation priorities and potential water savings. Furthermore, application of LSMs such as CLM5 can help to study the effects of irrigation beyond water availability, for example, on energy fluxes and climate, thus providing a powerful tool to assess the broader implications of irrigation at larger scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
期刊最新文献
Streamflow Intermittence in Europe: Estimating High-Resolution Monthly Time Series by Downscaling of Simulated Runoff and Random Forest Modeling Stability of Saltwater-Freshwater Mixing Zones in Beach Aquifers With Geologic Heterogeneity Quantification of Mixing Depth Using the Gradient Richardson Number in Submerged Aquatic Vegetation Meadows Hydro-Biogeochemical Controls on Nitrate Removal: Insights From Artificial Emergent Vegetation Experiments in a Recirculating Flume Mesocosm Permeability and Induced Polarization of Mudstones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1