{"title":"基于深度学习的透水混凝土中层结构分割模型","authors":"De Chen, Yukun Li, Jiaxing Tao, Yuchen Li, Shilong Zhang, Xuehui Shan, Tingting Wang, Zhi Qiao, Rui Zhao, Xiaoqiang Fan, Zhongrong Zhou","doi":"10.1111/mice.13300","DOIUrl":null,"url":null,"abstract":"<p>The meso-structure of pervious concrete significantly influences its overall performance. Accurately identifying the meso-structure of pervious concrete is imperative for optimizing the design of pervious concrete, considering its mechanical properties and functionality. Therefore, to address the difficulty of recognizing the meso-structures of pervious concrete, a method utilizing deep learning image semantic segmentation techniques is proposed in this study. First, based on the classical deep learning model, three models, namely, Res-UNet, ED-SegNet, and G-ENet, are proposed for recognizing pervious concrete meso-structure using deep learning image semantic segmentation techniques. These models introduce a residual module, a hybrid loss function, and a differential recognition branching structure to enhance the ability to recognize detailed information within pervious concrete meso-structure and small targets. Second, the respective recognition performances of these methods on the meso-structure of pervious concrete were thoroughly analyzed by experiment. The results indicate that the proposed three recognition methods for recognizing the meso-structure of permeable concrete outperform conventional techniques not only in terms of efficiency but also in recognition accuracy and the ability to distinguish and identify aggregates, pores, and cement binders. In terms of comprehensive recognition effectiveness, the Res-UNet model outperforms, followed by ED-SegNet and G-ENet. Furthermore, the computational efficiency of these three recognition methods meets the requirements of engineering applications.</p>","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"39 23","pages":"3626-3645"},"PeriodicalIF":8.5000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based segmentation model for permeable concrete meso-structures\",\"authors\":\"De Chen, Yukun Li, Jiaxing Tao, Yuchen Li, Shilong Zhang, Xuehui Shan, Tingting Wang, Zhi Qiao, Rui Zhao, Xiaoqiang Fan, Zhongrong Zhou\",\"doi\":\"10.1111/mice.13300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The meso-structure of pervious concrete significantly influences its overall performance. Accurately identifying the meso-structure of pervious concrete is imperative for optimizing the design of pervious concrete, considering its mechanical properties and functionality. Therefore, to address the difficulty of recognizing the meso-structures of pervious concrete, a method utilizing deep learning image semantic segmentation techniques is proposed in this study. First, based on the classical deep learning model, three models, namely, Res-UNet, ED-SegNet, and G-ENet, are proposed for recognizing pervious concrete meso-structure using deep learning image semantic segmentation techniques. These models introduce a residual module, a hybrid loss function, and a differential recognition branching structure to enhance the ability to recognize detailed information within pervious concrete meso-structure and small targets. Second, the respective recognition performances of these methods on the meso-structure of pervious concrete were thoroughly analyzed by experiment. The results indicate that the proposed three recognition methods for recognizing the meso-structure of permeable concrete outperform conventional techniques not only in terms of efficiency but also in recognition accuracy and the ability to distinguish and identify aggregates, pores, and cement binders. In terms of comprehensive recognition effectiveness, the Res-UNet model outperforms, followed by ED-SegNet and G-ENet. Furthermore, the computational efficiency of these three recognition methods meets the requirements of engineering applications.</p>\",\"PeriodicalId\":156,\"journal\":{\"name\":\"Computer-Aided Civil and Infrastructure Engineering\",\"volume\":\"39 23\",\"pages\":\"3626-3645\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Civil and Infrastructure Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mice.13300\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mice.13300","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Deep learning-based segmentation model for permeable concrete meso-structures
The meso-structure of pervious concrete significantly influences its overall performance. Accurately identifying the meso-structure of pervious concrete is imperative for optimizing the design of pervious concrete, considering its mechanical properties and functionality. Therefore, to address the difficulty of recognizing the meso-structures of pervious concrete, a method utilizing deep learning image semantic segmentation techniques is proposed in this study. First, based on the classical deep learning model, three models, namely, Res-UNet, ED-SegNet, and G-ENet, are proposed for recognizing pervious concrete meso-structure using deep learning image semantic segmentation techniques. These models introduce a residual module, a hybrid loss function, and a differential recognition branching structure to enhance the ability to recognize detailed information within pervious concrete meso-structure and small targets. Second, the respective recognition performances of these methods on the meso-structure of pervious concrete were thoroughly analyzed by experiment. The results indicate that the proposed three recognition methods for recognizing the meso-structure of permeable concrete outperform conventional techniques not only in terms of efficiency but also in recognition accuracy and the ability to distinguish and identify aggregates, pores, and cement binders. In terms of comprehensive recognition effectiveness, the Res-UNet model outperforms, followed by ED-SegNet and G-ENet. Furthermore, the computational efficiency of these three recognition methods meets the requirements of engineering applications.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.