{"title":"在表达 aggrecan 的细胞中删除 Bmal1 会导致小鼠颞下颌关节骨关节炎。","authors":"Lifan Liao, Lin Yang, Yu Li, Jiale Hu, Huang Lu, Huan Liu, Jiahao Huang, Longlong He, Zhaoli Meng, Jianfei Liang, Di Chen, Qin Zhou, Xiaofeng Chang, Shufang Wu","doi":"10.1007/s00774-024-01524-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Articular cartilage is the major affected tissue during the development of osteoarthritis (OA) in temporomandibular joint (TMJ). The core circadian rhythm molecule Bmal1 regulates chondrocyte proliferation, differentiation and apoptosis; however, its roles in condylar cartilage function and in TMJ OA have not been fully elucidated.</p><p><strong>Materials and methods: </strong>TMJ OA mouse model was induced by unilateral anterior crossbite (UAC) and Bmal1 protein expression in condylar cartilage were examined by western blot analysis. To determine the role of Bmal1 in TMJ OA, we generated cartilage-specific Bmal1 conditional knockout (cKO) mice (Bmal1<sup>Agc1CreER</sup> mice) and hematoxylin and eosin staining, toluidine blue and Safranin O/fast green, immunohistochemistry, TUNEL assay, real-time PCR analysis and Western blot assay were followed.</p><p><strong>Results: </strong>Bmal1 expression was reduced in condylar cartilage in a TMJ OA mouse model induced by UAC. The Bmal1 cKO mice displayed decreased cartilage matrix synthesis, reduced chondrocyte proliferation, increased chondrocyte hypertrophy and apoptosis as well as the upregulation of YAP expression in TMJ condylar cartilage.</p><p><strong>Conclusions: </strong>We demonstrated that Bmal1 was essential for TMJ tissue homeostasis and loss-of-function of Bmal1 in chondrocytes leads to the development of TMJ OA.</p>","PeriodicalId":15116,"journal":{"name":"Journal of Bone and Mineral Metabolism","volume":" ","pages":"529-537"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deletion of Bmal1 in aggrecan-expressing cells leads to mouse temporomandibular joint osteoarthritis.\",\"authors\":\"Lifan Liao, Lin Yang, Yu Li, Jiale Hu, Huang Lu, Huan Liu, Jiahao Huang, Longlong He, Zhaoli Meng, Jianfei Liang, Di Chen, Qin Zhou, Xiaofeng Chang, Shufang Wu\",\"doi\":\"10.1007/s00774-024-01524-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Articular cartilage is the major affected tissue during the development of osteoarthritis (OA) in temporomandibular joint (TMJ). The core circadian rhythm molecule Bmal1 regulates chondrocyte proliferation, differentiation and apoptosis; however, its roles in condylar cartilage function and in TMJ OA have not been fully elucidated.</p><p><strong>Materials and methods: </strong>TMJ OA mouse model was induced by unilateral anterior crossbite (UAC) and Bmal1 protein expression in condylar cartilage were examined by western blot analysis. To determine the role of Bmal1 in TMJ OA, we generated cartilage-specific Bmal1 conditional knockout (cKO) mice (Bmal1<sup>Agc1CreER</sup> mice) and hematoxylin and eosin staining, toluidine blue and Safranin O/fast green, immunohistochemistry, TUNEL assay, real-time PCR analysis and Western blot assay were followed.</p><p><strong>Results: </strong>Bmal1 expression was reduced in condylar cartilage in a TMJ OA mouse model induced by UAC. The Bmal1 cKO mice displayed decreased cartilage matrix synthesis, reduced chondrocyte proliferation, increased chondrocyte hypertrophy and apoptosis as well as the upregulation of YAP expression in TMJ condylar cartilage.</p><p><strong>Conclusions: </strong>We demonstrated that Bmal1 was essential for TMJ tissue homeostasis and loss-of-function of Bmal1 in chondrocytes leads to the development of TMJ OA.</p>\",\"PeriodicalId\":15116,\"journal\":{\"name\":\"Journal of Bone and Mineral Metabolism\",\"volume\":\" \",\"pages\":\"529-537\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bone and Mineral Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00774-024-01524-4\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone and Mineral Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00774-024-01524-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
摘要
引言关节软骨是颞下颌关节骨关节炎(OA)发病过程中的主要受累组织。核心昼夜节律分子Bmal1调控软骨细胞的增殖、分化和凋亡,但其在髁状突软骨功能和颞下颌关节OA中的作用尚未完全阐明:通过单侧前交叉咬合(UAC)诱导颞下颌关节OA小鼠模型,并通过Western印迹分析检测Bmal1蛋白在髁状突软骨中的表达。为了确定Bmal1在颞下颌关节OA中的作用,我们产生了软骨特异性Bmal1条件性基因敲除(cKO)小鼠(Bmal1Agc1CreER小鼠),并进行了苏木精和伊红染色、甲苯胺蓝和赛福宁O/快绿、免疫组化、TUNEL检测、实时PCR分析和Western印迹检测:结果:在 UAC 诱导的颞下颌关节 OA 小鼠模型中,Bmal1 在髁突软骨中的表达减少。结果:在 UAC 诱导的颞下颌关节 OA 小鼠模型中,Bmal1 在髁突软骨中的表达减少,Bmal1 cKO 小鼠在颞下颌关节髁突软骨中表现出软骨基质合成减少、软骨细胞增殖减少、软骨细胞肥大和凋亡增加以及 YAP 表达上调:我们证明了 Bmal1 对颞下颌关节组织的稳态至关重要,软骨细胞中 Bmal1 的功能缺失会导致颞下颌关节 OA 的发生。
Deletion of Bmal1 in aggrecan-expressing cells leads to mouse temporomandibular joint osteoarthritis.
Introduction: Articular cartilage is the major affected tissue during the development of osteoarthritis (OA) in temporomandibular joint (TMJ). The core circadian rhythm molecule Bmal1 regulates chondrocyte proliferation, differentiation and apoptosis; however, its roles in condylar cartilage function and in TMJ OA have not been fully elucidated.
Materials and methods: TMJ OA mouse model was induced by unilateral anterior crossbite (UAC) and Bmal1 protein expression in condylar cartilage were examined by western blot analysis. To determine the role of Bmal1 in TMJ OA, we generated cartilage-specific Bmal1 conditional knockout (cKO) mice (Bmal1Agc1CreER mice) and hematoxylin and eosin staining, toluidine blue and Safranin O/fast green, immunohistochemistry, TUNEL assay, real-time PCR analysis and Western blot assay were followed.
Results: Bmal1 expression was reduced in condylar cartilage in a TMJ OA mouse model induced by UAC. The Bmal1 cKO mice displayed decreased cartilage matrix synthesis, reduced chondrocyte proliferation, increased chondrocyte hypertrophy and apoptosis as well as the upregulation of YAP expression in TMJ condylar cartilage.
Conclusions: We demonstrated that Bmal1 was essential for TMJ tissue homeostasis and loss-of-function of Bmal1 in chondrocytes leads to the development of TMJ OA.
期刊介绍:
The Journal of Bone and Mineral Metabolism (JBMM) provides an international forum for researchers and clinicians to present and discuss topics relevant to bone, teeth, and mineral metabolism, as well as joint and musculoskeletal disorders. The journal welcomes the submission of manuscripts from any country. Membership in the society is not a prerequisite for submission. Acceptance is based on the originality, significance, and validity of the material presented. The journal is aimed at researchers and clinicians dedicated to improvements in research, development, and patient-care in the fields of bone and mineral metabolism.