一个中国家庭中与非综合征性耳聋 2A 相关的 KCNQ4 新变异 c.902C>A (p. A301D)。

IF 1.5 4区 医学 Q4 GENETICS & HEREDITY Molecular Genetics & Genomic Medicine Pub Date : 2024-07-01 DOI:10.1002/mgg3.2446
Lingyan Ren, Jiangfen Wu, Ying Kuang, Kun Chen, Minmin Jiang, Zhaozhen Zhuo, Zuwei Cao, Shengwen Huang
{"title":"一个中国家庭中与非综合征性耳聋 2A 相关的 KCNQ4 新变异 c.902C>A (p. A301D)。","authors":"Lingyan Ren, Jiangfen Wu, Ying Kuang, Kun Chen, Minmin Jiang, Zhaozhen Zhuo, Zuwei Cao, Shengwen Huang","doi":"10.1002/mgg3.2446","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Deafness autosomal dominant 2A (DFNA2A) is related to non-syndromic genetic hearing impairment. The KCNQ4 (Potassium Voltage-Gated Channel Subfamily Q Member 4) can lead to DFNA2A. In this study, we report a case of autosomal dominant non-syndromic hearing loss with six family members as caused by a novel variant in the KCNQ4 gene.</p><p><strong>Methods: </strong>The whole-exome sequencing (WES) and pure tone audiometry were performed on the proband of the family. Sanger sequencing was conducted on family members to determine if the novel variant in the KCNQ4 gene was present. Evolutionary conservation analysis and computational tertiary structure protein prediction of the wild-type KCNQ4 protein and its variant were then performed. In addition, voltage-gated channel activity of the wild-type KCNQ4 protein and its variant were tested using whole-cell patch clamp.</p><p><strong>Results: </strong>It was observed that the proband had inherited autosomal dominant, non-syndromic sensorineural hearing loss as a trait. A novel co-segregating heterozygous missense variant (c.902C>A, p.Ala301Asp) of the KCNQ4 gene was identified in the proband and other five affected family members. This variant was predicted to cause an alanine-to-aspartic acid substitution at position 301 in the KCNQ4 protein. The alanine at position 301 is well conserved across different species. Whole-cell patch clamp showed that there was a significant difference between the WT protein currents and the mutant protein currents in the voltage-gated channel activity.</p><p><strong>Conclusion: </strong>In the present study, performing WES in conjunction with Sanger sequencing enhanced the detection of a novel, potentially causative variant (c301 A>G; p.Ala301Asp) in exon 6 of the KCNQ4 gene. Therefore, our findings contributed to the mutation spectrum of the KCNQ4 gene and may be useful in the diagnosis and gene therapy of deafness autosomal dominant 2A.</p>","PeriodicalId":18852,"journal":{"name":"Molecular Genetics & Genomic Medicine","volume":"12 7","pages":"e2446"},"PeriodicalIF":1.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232888/pdf/","citationCount":"0","resultStr":"{\"title\":\"A novel variant c.902C>A (p. A301D) in KCNQ4 associated with non-syndromic deafness 2A in a Chinese family.\",\"authors\":\"Lingyan Ren, Jiangfen Wu, Ying Kuang, Kun Chen, Minmin Jiang, Zhaozhen Zhuo, Zuwei Cao, Shengwen Huang\",\"doi\":\"10.1002/mgg3.2446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Deafness autosomal dominant 2A (DFNA2A) is related to non-syndromic genetic hearing impairment. The KCNQ4 (Potassium Voltage-Gated Channel Subfamily Q Member 4) can lead to DFNA2A. In this study, we report a case of autosomal dominant non-syndromic hearing loss with six family members as caused by a novel variant in the KCNQ4 gene.</p><p><strong>Methods: </strong>The whole-exome sequencing (WES) and pure tone audiometry were performed on the proband of the family. Sanger sequencing was conducted on family members to determine if the novel variant in the KCNQ4 gene was present. Evolutionary conservation analysis and computational tertiary structure protein prediction of the wild-type KCNQ4 protein and its variant were then performed. In addition, voltage-gated channel activity of the wild-type KCNQ4 protein and its variant were tested using whole-cell patch clamp.</p><p><strong>Results: </strong>It was observed that the proband had inherited autosomal dominant, non-syndromic sensorineural hearing loss as a trait. A novel co-segregating heterozygous missense variant (c.902C>A, p.Ala301Asp) of the KCNQ4 gene was identified in the proband and other five affected family members. This variant was predicted to cause an alanine-to-aspartic acid substitution at position 301 in the KCNQ4 protein. The alanine at position 301 is well conserved across different species. Whole-cell patch clamp showed that there was a significant difference between the WT protein currents and the mutant protein currents in the voltage-gated channel activity.</p><p><strong>Conclusion: </strong>In the present study, performing WES in conjunction with Sanger sequencing enhanced the detection of a novel, potentially causative variant (c301 A>G; p.Ala301Asp) in exon 6 of the KCNQ4 gene. Therefore, our findings contributed to the mutation spectrum of the KCNQ4 gene and may be useful in the diagnosis and gene therapy of deafness autosomal dominant 2A.</p>\",\"PeriodicalId\":18852,\"journal\":{\"name\":\"Molecular Genetics & Genomic Medicine\",\"volume\":\"12 7\",\"pages\":\"e2446\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232888/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Genetics & Genomic Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mgg3.2446\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics & Genomic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mgg3.2446","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

背景:常染色体显性遗传性耳聋 2A(DFNA2A)与非综合征遗传性听力障碍有关。KCNQ4(钾电压门控通道 Q 亚家族成员 4)可导致 DFNA2A。在本研究中,我们报告了一例由 KCNQ4 基因的新型变异引起的常染色体显性遗传性听力损失病例,该病例有 6 名家族成员:方法:我们对该家族中的原发性患者进行了全基因组测序(WES)和纯音测听。对家族成员进行了 Sanger 测序,以确定是否存在 KCNQ4 基因的新型变异。然后对野生型 KCNQ4 蛋白及其变异体进行了进化保护分析和计算三级结构蛋白预测。此外,还使用全细胞膜片钳测试了野生型 KCNQ4 蛋白及其变体的电压门控通道活性:结果:研究发现,该患者为常染色体显性遗传的非综合征感音神经性听力损失。在该患者及其他五名受影响的家庭成员中,发现了 KCNQ4 基因的一个新的共分离杂合错义变体(c.902C>A, p.Ala301Asp)。据预测,该变异会导致 KCNQ4 蛋白中第 301 位的丙氨酸变成天冬氨酸。位于 301 位的丙氨酸在不同物种中具有良好的保守性。全细胞膜片钳显示,WT 蛋白电流与突变体蛋白电流的电压门控通道活性存在显著差异:在本研究中,在进行 WES 测序的同时进行 Sanger 测序,有助于在 KCNQ4 基因第 6 外显子中发现一个新的、潜在的致病变异(c301 A>G; p.Ala301Asp)。因此,我们的研究结果丰富了 KCNQ4 基因的突变谱,可能有助于常染色体显性 2A 耳聋的诊断和基因治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel variant c.902C>A (p. A301D) in KCNQ4 associated with non-syndromic deafness 2A in a Chinese family.

Background: Deafness autosomal dominant 2A (DFNA2A) is related to non-syndromic genetic hearing impairment. The KCNQ4 (Potassium Voltage-Gated Channel Subfamily Q Member 4) can lead to DFNA2A. In this study, we report a case of autosomal dominant non-syndromic hearing loss with six family members as caused by a novel variant in the KCNQ4 gene.

Methods: The whole-exome sequencing (WES) and pure tone audiometry were performed on the proband of the family. Sanger sequencing was conducted on family members to determine if the novel variant in the KCNQ4 gene was present. Evolutionary conservation analysis and computational tertiary structure protein prediction of the wild-type KCNQ4 protein and its variant were then performed. In addition, voltage-gated channel activity of the wild-type KCNQ4 protein and its variant were tested using whole-cell patch clamp.

Results: It was observed that the proband had inherited autosomal dominant, non-syndromic sensorineural hearing loss as a trait. A novel co-segregating heterozygous missense variant (c.902C>A, p.Ala301Asp) of the KCNQ4 gene was identified in the proband and other five affected family members. This variant was predicted to cause an alanine-to-aspartic acid substitution at position 301 in the KCNQ4 protein. The alanine at position 301 is well conserved across different species. Whole-cell patch clamp showed that there was a significant difference between the WT protein currents and the mutant protein currents in the voltage-gated channel activity.

Conclusion: In the present study, performing WES in conjunction with Sanger sequencing enhanced the detection of a novel, potentially causative variant (c301 A>G; p.Ala301Asp) in exon 6 of the KCNQ4 gene. Therefore, our findings contributed to the mutation spectrum of the KCNQ4 gene and may be useful in the diagnosis and gene therapy of deafness autosomal dominant 2A.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Genetics & Genomic Medicine
Molecular Genetics & Genomic Medicine Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
4.20
自引率
0.00%
发文量
241
审稿时长
14 weeks
期刊介绍: Molecular Genetics & Genomic Medicine is a peer-reviewed journal for rapid dissemination of quality research related to the dynamically developing areas of human, molecular and medical genetics. The journal publishes original research articles covering findings in phenotypic, molecular, biological, and genomic aspects of genomic variation, inherited disorders and birth defects. The broad publishing spectrum of Molecular Genetics & Genomic Medicine includes rare and common disorders from diagnosis to treatment. Examples of appropriate articles include reports of novel disease genes, functional studies of genetic variants, in-depth genotype-phenotype studies, genomic analysis of inherited disorders, molecular diagnostic methods, medical bioinformatics, ethical, legal, and social implications (ELSI), and approaches to clinical diagnosis. Molecular Genetics & Genomic Medicine provides a scientific home for next generation sequencing studies of rare and common disorders, which will make research in this fascinating area easily and rapidly accessible to the scientific community. This will serve as the basis for translating next generation sequencing studies into individualized diagnostics and therapeutics, for day-to-day medical care. Molecular Genetics & Genomic Medicine publishes original research articles, reviews, and research methods papers, along with invited editorials and commentaries. Original research papers must report well-conducted research with conclusions supported by the data presented.
期刊最新文献
Deciphering Growth Patterns in Korean Children With Sotos Syndrome Through the Development of a Disease-Specific Growth Chart. A Novel Mutation of FOXC1 (P136L) in an Axenfeld-Rieger Syndrome Patient With a Systematized Delusion of Jealousy: A Case Report and Literature Review. A Novel Splice Site Variant in COL6A1 Causes Ullrich Congenital Muscular Dystrophy in a Consanguineous Malian Family. SRY+ Derivative X Chromosome in a Female With Apparently Typical Sexual Development. Reclassification of Two MLH1 Variants of Uncertain Significance Utilizing Clinical and Functional Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1