{"title":"一个中国家庭中与非综合征性耳聋 2A 相关的 KCNQ4 新变异 c.902C>A (p. A301D)。","authors":"Lingyan Ren, Jiangfen Wu, Ying Kuang, Kun Chen, Minmin Jiang, Zhaozhen Zhuo, Zuwei Cao, Shengwen Huang","doi":"10.1002/mgg3.2446","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Deafness autosomal dominant 2A (DFNA2A) is related to non-syndromic genetic hearing impairment. The KCNQ4 (Potassium Voltage-Gated Channel Subfamily Q Member 4) can lead to DFNA2A. In this study, we report a case of autosomal dominant non-syndromic hearing loss with six family members as caused by a novel variant in the KCNQ4 gene.</p><p><strong>Methods: </strong>The whole-exome sequencing (WES) and pure tone audiometry were performed on the proband of the family. Sanger sequencing was conducted on family members to determine if the novel variant in the KCNQ4 gene was present. Evolutionary conservation analysis and computational tertiary structure protein prediction of the wild-type KCNQ4 protein and its variant were then performed. In addition, voltage-gated channel activity of the wild-type KCNQ4 protein and its variant were tested using whole-cell patch clamp.</p><p><strong>Results: </strong>It was observed that the proband had inherited autosomal dominant, non-syndromic sensorineural hearing loss as a trait. A novel co-segregating heterozygous missense variant (c.902C>A, p.Ala301Asp) of the KCNQ4 gene was identified in the proband and other five affected family members. This variant was predicted to cause an alanine-to-aspartic acid substitution at position 301 in the KCNQ4 protein. The alanine at position 301 is well conserved across different species. Whole-cell patch clamp showed that there was a significant difference between the WT protein currents and the mutant protein currents in the voltage-gated channel activity.</p><p><strong>Conclusion: </strong>In the present study, performing WES in conjunction with Sanger sequencing enhanced the detection of a novel, potentially causative variant (c301 A>G; p.Ala301Asp) in exon 6 of the KCNQ4 gene. Therefore, our findings contributed to the mutation spectrum of the KCNQ4 gene and may be useful in the diagnosis and gene therapy of deafness autosomal dominant 2A.</p>","PeriodicalId":18852,"journal":{"name":"Molecular Genetics & Genomic Medicine","volume":"12 7","pages":"e2446"},"PeriodicalIF":1.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232888/pdf/","citationCount":"0","resultStr":"{\"title\":\"A novel variant c.902C>A (p. A301D) in KCNQ4 associated with non-syndromic deafness 2A in a Chinese family.\",\"authors\":\"Lingyan Ren, Jiangfen Wu, Ying Kuang, Kun Chen, Minmin Jiang, Zhaozhen Zhuo, Zuwei Cao, Shengwen Huang\",\"doi\":\"10.1002/mgg3.2446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Deafness autosomal dominant 2A (DFNA2A) is related to non-syndromic genetic hearing impairment. The KCNQ4 (Potassium Voltage-Gated Channel Subfamily Q Member 4) can lead to DFNA2A. In this study, we report a case of autosomal dominant non-syndromic hearing loss with six family members as caused by a novel variant in the KCNQ4 gene.</p><p><strong>Methods: </strong>The whole-exome sequencing (WES) and pure tone audiometry were performed on the proband of the family. Sanger sequencing was conducted on family members to determine if the novel variant in the KCNQ4 gene was present. Evolutionary conservation analysis and computational tertiary structure protein prediction of the wild-type KCNQ4 protein and its variant were then performed. In addition, voltage-gated channel activity of the wild-type KCNQ4 protein and its variant were tested using whole-cell patch clamp.</p><p><strong>Results: </strong>It was observed that the proband had inherited autosomal dominant, non-syndromic sensorineural hearing loss as a trait. A novel co-segregating heterozygous missense variant (c.902C>A, p.Ala301Asp) of the KCNQ4 gene was identified in the proband and other five affected family members. This variant was predicted to cause an alanine-to-aspartic acid substitution at position 301 in the KCNQ4 protein. The alanine at position 301 is well conserved across different species. Whole-cell patch clamp showed that there was a significant difference between the WT protein currents and the mutant protein currents in the voltage-gated channel activity.</p><p><strong>Conclusion: </strong>In the present study, performing WES in conjunction with Sanger sequencing enhanced the detection of a novel, potentially causative variant (c301 A>G; p.Ala301Asp) in exon 6 of the KCNQ4 gene. Therefore, our findings contributed to the mutation spectrum of the KCNQ4 gene and may be useful in the diagnosis and gene therapy of deafness autosomal dominant 2A.</p>\",\"PeriodicalId\":18852,\"journal\":{\"name\":\"Molecular Genetics & Genomic Medicine\",\"volume\":\"12 7\",\"pages\":\"e2446\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232888/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Genetics & Genomic Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mgg3.2446\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics & Genomic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mgg3.2446","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
A novel variant c.902C>A (p. A301D) in KCNQ4 associated with non-syndromic deafness 2A in a Chinese family.
Background: Deafness autosomal dominant 2A (DFNA2A) is related to non-syndromic genetic hearing impairment. The KCNQ4 (Potassium Voltage-Gated Channel Subfamily Q Member 4) can lead to DFNA2A. In this study, we report a case of autosomal dominant non-syndromic hearing loss with six family members as caused by a novel variant in the KCNQ4 gene.
Methods: The whole-exome sequencing (WES) and pure tone audiometry were performed on the proband of the family. Sanger sequencing was conducted on family members to determine if the novel variant in the KCNQ4 gene was present. Evolutionary conservation analysis and computational tertiary structure protein prediction of the wild-type KCNQ4 protein and its variant were then performed. In addition, voltage-gated channel activity of the wild-type KCNQ4 protein and its variant were tested using whole-cell patch clamp.
Results: It was observed that the proband had inherited autosomal dominant, non-syndromic sensorineural hearing loss as a trait. A novel co-segregating heterozygous missense variant (c.902C>A, p.Ala301Asp) of the KCNQ4 gene was identified in the proband and other five affected family members. This variant was predicted to cause an alanine-to-aspartic acid substitution at position 301 in the KCNQ4 protein. The alanine at position 301 is well conserved across different species. Whole-cell patch clamp showed that there was a significant difference between the WT protein currents and the mutant protein currents in the voltage-gated channel activity.
Conclusion: In the present study, performing WES in conjunction with Sanger sequencing enhanced the detection of a novel, potentially causative variant (c301 A>G; p.Ala301Asp) in exon 6 of the KCNQ4 gene. Therefore, our findings contributed to the mutation spectrum of the KCNQ4 gene and may be useful in the diagnosis and gene therapy of deafness autosomal dominant 2A.
期刊介绍:
Molecular Genetics & Genomic Medicine is a peer-reviewed journal for rapid dissemination of quality research related to the dynamically developing areas of human, molecular and medical genetics. The journal publishes original research articles covering findings in phenotypic, molecular, biological, and genomic aspects of genomic variation, inherited disorders and birth defects. The broad publishing spectrum of Molecular Genetics & Genomic Medicine includes rare and common disorders from diagnosis to treatment. Examples of appropriate articles include reports of novel disease genes, functional studies of genetic variants, in-depth genotype-phenotype studies, genomic analysis of inherited disorders, molecular diagnostic methods, medical bioinformatics, ethical, legal, and social implications (ELSI), and approaches to clinical diagnosis. Molecular Genetics & Genomic Medicine provides a scientific home for next generation sequencing studies of rare and common disorders, which will make research in this fascinating area easily and rapidly accessible to the scientific community. This will serve as the basis for translating next generation sequencing studies into individualized diagnostics and therapeutics, for day-to-day medical care.
Molecular Genetics & Genomic Medicine publishes original research articles, reviews, and research methods papers, along with invited editorials and commentaries. Original research papers must report well-conducted research with conclusions supported by the data presented.