{"title":"用于早期临床试验剂量查找的受限最佳自适应设计。","authors":"M Iftakhar Alam, Barbara Bogacka, D Stephen Coad","doi":"10.1080/10543406.2024.2373452","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, interest has grown in the development of dose-finding methods that consider both toxicity and efficacy as endpoints. Along with responses on these, the incorporation of pharmacokinetic (PK) data can be beneficial in terms of patients' safety and can also increase the efficiency of the design for finding the best dose for the next phase. In this paper, the maximum concentration (<math><mrow><msub><mi>C</mi><mrow><mo>max</mo></mrow></msub></mrow></math>) is used as the PK measure guiding the dose selection. The ethically attractive approach, which is based on the probability of efficacy, is used as a dose optimisation criterion. At each stage of an adaptive trial, that dose is selected for which the criterion is maximised, subject to the constraints imposed on the <math><mrow><msub><mi>C</mi><mrow><mo>max</mo></mrow></msub></mrow></math> and the probability of toxicity. The inter-patient variability of the PK model parameters is considered, and population <math><mi>D</mi></math>-optimal sampling time points for measuring the concentration of a drug in the blood are calculated. The method is illustrated with a one-compartment PK model with first-order absorption, with the parameters being assumed to be random. The Cox model for bivariate binary responses is employed to model the dose-response outcomes. The results of a simulation study for several plausible dose-response scenarios show a significant gain in the efficiency of the design, as well as a reduction in the proportion of toxic responses.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-26"},"PeriodicalIF":1.2000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A constrained optimum adaptive design for dose finding in early phase clinical trials.\",\"authors\":\"M Iftakhar Alam, Barbara Bogacka, D Stephen Coad\",\"doi\":\"10.1080/10543406.2024.2373452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recently, interest has grown in the development of dose-finding methods that consider both toxicity and efficacy as endpoints. Along with responses on these, the incorporation of pharmacokinetic (PK) data can be beneficial in terms of patients' safety and can also increase the efficiency of the design for finding the best dose for the next phase. In this paper, the maximum concentration (<math><mrow><msub><mi>C</mi><mrow><mo>max</mo></mrow></msub></mrow></math>) is used as the PK measure guiding the dose selection. The ethically attractive approach, which is based on the probability of efficacy, is used as a dose optimisation criterion. At each stage of an adaptive trial, that dose is selected for which the criterion is maximised, subject to the constraints imposed on the <math><mrow><msub><mi>C</mi><mrow><mo>max</mo></mrow></msub></mrow></math> and the probability of toxicity. The inter-patient variability of the PK model parameters is considered, and population <math><mi>D</mi></math>-optimal sampling time points for measuring the concentration of a drug in the blood are calculated. The method is illustrated with a one-compartment PK model with first-order absorption, with the parameters being assumed to be random. The Cox model for bivariate binary responses is employed to model the dose-response outcomes. The results of a simulation study for several plausible dose-response scenarios show a significant gain in the efficiency of the design, as well as a reduction in the proportion of toxic responses.</p>\",\"PeriodicalId\":54870,\"journal\":{\"name\":\"Journal of Biopharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"1-26\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biopharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10543406.2024.2373452\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2024.2373452","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
A constrained optimum adaptive design for dose finding in early phase clinical trials.
Recently, interest has grown in the development of dose-finding methods that consider both toxicity and efficacy as endpoints. Along with responses on these, the incorporation of pharmacokinetic (PK) data can be beneficial in terms of patients' safety and can also increase the efficiency of the design for finding the best dose for the next phase. In this paper, the maximum concentration () is used as the PK measure guiding the dose selection. The ethically attractive approach, which is based on the probability of efficacy, is used as a dose optimisation criterion. At each stage of an adaptive trial, that dose is selected for which the criterion is maximised, subject to the constraints imposed on the and the probability of toxicity. The inter-patient variability of the PK model parameters is considered, and population -optimal sampling time points for measuring the concentration of a drug in the blood are calculated. The method is illustrated with a one-compartment PK model with first-order absorption, with the parameters being assumed to be random. The Cox model for bivariate binary responses is employed to model the dose-response outcomes. The results of a simulation study for several plausible dose-response scenarios show a significant gain in the efficiency of the design, as well as a reduction in the proportion of toxic responses.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.