用于双波段伪装的高灵活性和耐温性相变器件

IF 11.9 1区 物理与天体物理 Q1 PHYSICS, APPLIED Applied physics reviews Pub Date : 2024-07-09 DOI:10.1063/5.0199932
Liuxiang Huo, Lin Wang, Shubing Li, Xionghu Xu, Liangqing Zhu, Yawei Li, Liyan Shang, Kai Jiang, Junhao Chu, Zhigao Hu
{"title":"用于双波段伪装的高灵活性和耐温性相变器件","authors":"Liuxiang Huo, Lin Wang, Shubing Li, Xionghu Xu, Liangqing Zhu, Yawei Li, Liyan Shang, Kai Jiang, Junhao Chu, Zhigao Hu","doi":"10.1063/5.0199932","DOIUrl":null,"url":null,"abstract":"Here, we have developed a more temperature-tolerant emitter with a gradient emittance, which can enable adaptation to changing environmental conditions. Such a thermal emitter is mainly constructed by multilayered films composed of nitrogen (N)-doped Ge2Sb2Te5 (N-GST) and an underlying metal film. The proposed device not only possesses special wavelength selectivity in the middle infrared range but can also dynamically adjust average emissivity (from 0.13 to 0.83) through the degree of crystallization. Besides, N doping can elevate the phase transition temperature of GST and enhance its thermal resistance, which renders it particularly well-suited for applications in higher temperature environments than pure GST. This emitter also shows strong adhesion capability and high flexibility against bending, enabling more practical and widespread situations. By using a multi-layer structure, we combined the more temperature-tolerant and dynamically modulating N-GST emitter with an optical thin film, successfully achieving dual camouflage for both infrared and visible light. The element doping technology and multi-layer stacking approach presented in this research will provide valuable insight for the development of dynamic emissive materials in multi-spectral camouflage scenarios.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"20 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly flexible and temperature-tolerant phase change devices for dual-band camouflage\",\"authors\":\"Liuxiang Huo, Lin Wang, Shubing Li, Xionghu Xu, Liangqing Zhu, Yawei Li, Liyan Shang, Kai Jiang, Junhao Chu, Zhigao Hu\",\"doi\":\"10.1063/5.0199932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here, we have developed a more temperature-tolerant emitter with a gradient emittance, which can enable adaptation to changing environmental conditions. Such a thermal emitter is mainly constructed by multilayered films composed of nitrogen (N)-doped Ge2Sb2Te5 (N-GST) and an underlying metal film. The proposed device not only possesses special wavelength selectivity in the middle infrared range but can also dynamically adjust average emissivity (from 0.13 to 0.83) through the degree of crystallization. Besides, N doping can elevate the phase transition temperature of GST and enhance its thermal resistance, which renders it particularly well-suited for applications in higher temperature environments than pure GST. This emitter also shows strong adhesion capability and high flexibility against bending, enabling more practical and widespread situations. By using a multi-layer structure, we combined the more temperature-tolerant and dynamically modulating N-GST emitter with an optical thin film, successfully achieving dual camouflage for both infrared and visible light. The element doping technology and multi-layer stacking approach presented in this research will provide valuable insight for the development of dynamic emissive materials in multi-spectral camouflage scenarios.\",\"PeriodicalId\":8200,\"journal\":{\"name\":\"Applied physics reviews\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied physics reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0199932\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0199932","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在这里,我们开发了一种具有梯度发射率的耐温性更强的发射器,它能够适应不断变化的环境条件。这种热发射器主要由掺氮 Ge2Sb2Te5(N-GST)和底层金属膜组成的多层薄膜构成。所提出的器件不仅在中红外范围内具有特殊的波长选择性,还能通过结晶程度动态调节平均发射率(从 0.13 到 0.83)。此外,掺杂 N 还能提高 GST 的相变温度并增强其热阻,因此与纯 GST 相比,它特别适合应用于温度较高的环境。这种发射器还具有很强的附着力和抗弯曲的高柔韧性,因此可以应用于更多的实际场合。通过使用多层结构,我们将耐温性更强、可动态调制的 N-GST 发射器与光学薄膜相结合,成功实现了红外线和可见光的双重伪装。本研究中介绍的元素掺杂技术和多层堆叠方法将为多光谱伪装场景中动态发射材料的开发提供宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Highly flexible and temperature-tolerant phase change devices for dual-band camouflage
Here, we have developed a more temperature-tolerant emitter with a gradient emittance, which can enable adaptation to changing environmental conditions. Such a thermal emitter is mainly constructed by multilayered films composed of nitrogen (N)-doped Ge2Sb2Te5 (N-GST) and an underlying metal film. The proposed device not only possesses special wavelength selectivity in the middle infrared range but can also dynamically adjust average emissivity (from 0.13 to 0.83) through the degree of crystallization. Besides, N doping can elevate the phase transition temperature of GST and enhance its thermal resistance, which renders it particularly well-suited for applications in higher temperature environments than pure GST. This emitter also shows strong adhesion capability and high flexibility against bending, enabling more practical and widespread situations. By using a multi-layer structure, we combined the more temperature-tolerant and dynamically modulating N-GST emitter with an optical thin film, successfully achieving dual camouflage for both infrared and visible light. The element doping technology and multi-layer stacking approach presented in this research will provide valuable insight for the development of dynamic emissive materials in multi-spectral camouflage scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied physics reviews
Applied physics reviews PHYSICS, APPLIED-
CiteScore
22.50
自引率
2.00%
发文量
113
审稿时长
2 months
期刊介绍: Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles: Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community. Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.
期刊最新文献
MXene-TiO2 heterostructured iontronic neural devices based on ion-dynamic capacitance enabling optoelectronic modulation Recent advances in multimodal skin-like wearable sensors Thermal transport property of boron nitride nanosheets Flexible magnetoelectric systems: Types, principles, materials, preparation and application Advances in volatile organic compounds detection: From fundamental research to real-world applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1