一般空间中最小过采样和插值的随机最小二乘法

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED SIAM Journal on Numerical Analysis Pub Date : 2024-07-09 DOI:10.1137/23m160178x
Matthieu Dolbeault, Moulay Abdellah Chkifa
{"title":"一般空间中最小过采样和插值的随机最小二乘法","authors":"Matthieu Dolbeault, Moulay Abdellah Chkifa","doi":"10.1137/23m160178x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1515-1538, August 2024. <br/> Abstract. In approximation of functions based on point values, least-squares methods provide more stability than interpolation, at the expense of increasing the sampling budget. We show that near-optimal approximation error can nevertheless be achieved, in an expected [math] sense, as soon as the sample size [math] is larger than the dimension [math] of the approximation space by a constant multiplicative ratio. On the other hand, for [math], we obtain an interpolation strategy with a stability factor of order [math]. The proposed sampling algorithms are greedy procedures based on [Batson, Spielman, and Srivastava, Twice-Ramanujan sparsifiers, in Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, 2009, pp. 255–262] and [Lee and Sun, SIAM J. Comput., 47 (2018), pp. 2315–2336], with polynomial computational complexity.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"3 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Randomized Least-Squares with Minimal Oversampling and Interpolation in General Spaces\",\"authors\":\"Matthieu Dolbeault, Moulay Abdellah Chkifa\",\"doi\":\"10.1137/23m160178x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1515-1538, August 2024. <br/> Abstract. In approximation of functions based on point values, least-squares methods provide more stability than interpolation, at the expense of increasing the sampling budget. We show that near-optimal approximation error can nevertheless be achieved, in an expected [math] sense, as soon as the sample size [math] is larger than the dimension [math] of the approximation space by a constant multiplicative ratio. On the other hand, for [math], we obtain an interpolation strategy with a stability factor of order [math]. The proposed sampling algorithms are greedy procedures based on [Batson, Spielman, and Srivastava, Twice-Ramanujan sparsifiers, in Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, 2009, pp. 255–262] and [Lee and Sun, SIAM J. Comput., 47 (2018), pp. 2315–2336], with polynomial computational complexity.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m160178x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m160178x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 数值分析期刊》第 62 卷第 4 期第 1515-1538 页,2024 年 8 月。 摘要。在基于点值的函数逼近中,最小二乘法比插值法更稳定,但代价是增加了采样预算。我们的研究表明,只要样本量[math]比近似空间的维数[math]大一个恒定的乘法比,就能在预期[math]意义上实现近似误差接近最优。另一方面,对于 [math],我们得到的插值策略的稳定系数为 [math]。所提出的采样算法是基于 [Batson, Spielman, and Srivastava, Twice-Ramanujan sparsifiers, in Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, 2009, pp.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Randomized Least-Squares with Minimal Oversampling and Interpolation in General Spaces
SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1515-1538, August 2024.
Abstract. In approximation of functions based on point values, least-squares methods provide more stability than interpolation, at the expense of increasing the sampling budget. We show that near-optimal approximation error can nevertheless be achieved, in an expected [math] sense, as soon as the sample size [math] is larger than the dimension [math] of the approximation space by a constant multiplicative ratio. On the other hand, for [math], we obtain an interpolation strategy with a stability factor of order [math]. The proposed sampling algorithms are greedy procedures based on [Batson, Spielman, and Srivastava, Twice-Ramanujan sparsifiers, in Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, 2009, pp. 255–262] and [Lee and Sun, SIAM J. Comput., 47 (2018), pp. 2315–2336], with polynomial computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
期刊最新文献
Piecewise Linear Interpolation of Noise in Finite Element Approximations of Parabolic SPDEs Higher-Order Far-Field Boundary Conditions for Crystalline Defects On Polynomial Interpolation in the Monomial Basis Gaussian Process Regression under Computational and Epistemic Misspecification Corrigendum: Domain Decomposition Approaches for Mesh Generation via the Equidistribution Principle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1