用于超越衍射极限的全光学到达方向估计的超分辨率衍射神经网络

IF 20.6 Q1 OPTICS Light-Science & Applications Pub Date : 2024-07-10 DOI:10.1038/s41377-024-01511-4
Sheng Gao, Hang Chen, Yichen Wang, Zhengyang Duan, Haiou Zhang, Zhi Sun, Yuan Shen, Xing Lin
{"title":"用于超越衍射极限的全光学到达方向估计的超分辨率衍射神经网络","authors":"Sheng Gao, Hang Chen, Yichen Wang, Zhengyang Duan, Haiou Zhang, Zhi Sun, Yuan Shen, Xing Lin","doi":"10.1038/s41377-024-01511-4","DOIUrl":null,"url":null,"abstract":"<p>Wireless sensing of the wave propagation direction from radio sources lays the foundation for communication, radar, navigation, etc. However, the existing signal processing paradigm for the direction of arrival estimation requires the radio frequency electronic circuit to demodulate and sample the multichannel baseband signals followed by a complicated computing process, which places the fundamental limit on its sensing speed and energy efficiency. Here, we propose the super-resolution diffractive neural networks (S-DNN) to process electromagnetic (EM) waves directly for the DOA estimation at the speed of light. The multilayer meta-structures of S-DNN generate super-oscillatory angular responses in local angular regions that can perform the all-optical DOA estimation with angular resolutions beyond the diffraction limit. The spatial-temporal multiplexing of passive and reconfigurable S-DNNs is utilized to achieve high-resolution DOA estimation over a wide field of view. The S-DNN is validated for the DOA estimation of multiple radio sources over 5 GHz frequency bandwidth with estimation latency over two to four orders of magnitude lower than the state-of-the-art commercial devices in principle. The results achieve the angular resolution over an order of magnitude, experimentally demonstrated with four times, higher than diffraction-limited resolution. We also apply S-DNN’s edge computing capability, assisted by reconfigurable intelligent surfaces, for extremely low-latency integrated sensing and communication with low power consumption. Our work is a significant step towards utilizing photonic computing processors to facilitate various wireless sensing and communication tasks with advantages in both computing paradigms and performance over electronic computing.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":null,"pages":null},"PeriodicalIF":20.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Super-resolution diffractive neural network for all-optical direction of arrival estimation beyond diffraction limits\",\"authors\":\"Sheng Gao, Hang Chen, Yichen Wang, Zhengyang Duan, Haiou Zhang, Zhi Sun, Yuan Shen, Xing Lin\",\"doi\":\"10.1038/s41377-024-01511-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Wireless sensing of the wave propagation direction from radio sources lays the foundation for communication, radar, navigation, etc. However, the existing signal processing paradigm for the direction of arrival estimation requires the radio frequency electronic circuit to demodulate and sample the multichannel baseband signals followed by a complicated computing process, which places the fundamental limit on its sensing speed and energy efficiency. Here, we propose the super-resolution diffractive neural networks (S-DNN) to process electromagnetic (EM) waves directly for the DOA estimation at the speed of light. The multilayer meta-structures of S-DNN generate super-oscillatory angular responses in local angular regions that can perform the all-optical DOA estimation with angular resolutions beyond the diffraction limit. The spatial-temporal multiplexing of passive and reconfigurable S-DNNs is utilized to achieve high-resolution DOA estimation over a wide field of view. The S-DNN is validated for the DOA estimation of multiple radio sources over 5 GHz frequency bandwidth with estimation latency over two to four orders of magnitude lower than the state-of-the-art commercial devices in principle. The results achieve the angular resolution over an order of magnitude, experimentally demonstrated with four times, higher than diffraction-limited resolution. We also apply S-DNN’s edge computing capability, assisted by reconfigurable intelligent surfaces, for extremely low-latency integrated sensing and communication with low power consumption. Our work is a significant step towards utilizing photonic computing processors to facilitate various wireless sensing and communication tasks with advantages in both computing paradigms and performance over electronic computing.</p>\",\"PeriodicalId\":18069,\"journal\":{\"name\":\"Light-Science & Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light-Science & Applications\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-024-01511-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01511-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

对无线电波传播方向的无线传感为通信、雷达、导航等奠定了基础。然而,现有的到达方向估计信号处理范式需要射频电子电路对多通道基带信号进行解调和采样,然后进行复杂的计算处理,这从根本上限制了其传感速度和能效。在此,我们提出了超分辨率衍射神经网络(S-DNN),以光速直接处理电磁波(EM),进行 DOA 估计。S-DNN 的多层元结构可在局部角度区域产生超振荡角度响应,从而以超越衍射极限的角度分辨率执行全光 DOA 估计。利用无源和可重构 S-DNN 的时空复用技术,可在宽视场范围内实现高分辨率 DOA 估计。S-DNN 在 5 GHz 频率带宽上对多个无线电信号源的 DOA 估计进行了验证,其估计延迟原则上比最先进的商业设备低 2 到 4 个数量级。结果实现了超过一个数量级的角度分辨率,实验证明比衍射极限分辨率高出四倍。我们还应用了 S-DNN 的边缘计算能力,在可重构智能表面的辅助下,以低功耗实现了极低延迟的集成传感和通信。我们的工作是朝着利用光子计算处理器促进各种无线传感和通信任务迈出的重要一步,在计算模式和性能方面都比电子计算有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Super-resolution diffractive neural network for all-optical direction of arrival estimation beyond diffraction limits

Wireless sensing of the wave propagation direction from radio sources lays the foundation for communication, radar, navigation, etc. However, the existing signal processing paradigm for the direction of arrival estimation requires the radio frequency electronic circuit to demodulate and sample the multichannel baseband signals followed by a complicated computing process, which places the fundamental limit on its sensing speed and energy efficiency. Here, we propose the super-resolution diffractive neural networks (S-DNN) to process electromagnetic (EM) waves directly for the DOA estimation at the speed of light. The multilayer meta-structures of S-DNN generate super-oscillatory angular responses in local angular regions that can perform the all-optical DOA estimation with angular resolutions beyond the diffraction limit. The spatial-temporal multiplexing of passive and reconfigurable S-DNNs is utilized to achieve high-resolution DOA estimation over a wide field of view. The S-DNN is validated for the DOA estimation of multiple radio sources over 5 GHz frequency bandwidth with estimation latency over two to four orders of magnitude lower than the state-of-the-art commercial devices in principle. The results achieve the angular resolution over an order of magnitude, experimentally demonstrated with four times, higher than diffraction-limited resolution. We also apply S-DNN’s edge computing capability, assisted by reconfigurable intelligent surfaces, for extremely low-latency integrated sensing and communication with low power consumption. Our work is a significant step towards utilizing photonic computing processors to facilitate various wireless sensing and communication tasks with advantages in both computing paradigms and performance over electronic computing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
期刊最新文献
Parity-Time symmetry helps breaking a new limit Neural stimulation and modulation with sub-cellular precision by optomechanical bio-dart Phase-change VO2-based thermochromic smart windows Optical fibre based artificial compound eyes for direct static imaging and ultrafast motion detection Lanthanide ion-doped upconversion nanoparticles for low-energy super-resolution applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1