{"title":"使用高斯核进行配对排序","authors":"Guanhang Lei, Lei Shi","doi":"10.1007/s10444-024-10165-0","DOIUrl":null,"url":null,"abstract":"<div><p>Regularized pairwise ranking with Gaussian kernels is one of the cutting-edge learning algorithms. Despite a wide range of applications, a rigorous theoretical demonstration still lacks to support the performance of such ranking estimators. This work aims to fill this gap by developing novel oracle inequalities for regularized pairwise ranking. With the help of these oracle inequalities, we derive fast learning rates of Gaussian ranking estimators under a general box-counting dimension assumption on the input domain combined with the noise conditions or the standard smoothness condition. Our theoretical analysis improves the existing estimates and shows that a low intrinsic dimension of input space can help the rates circumvent the curse of dimensionality.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pairwise ranking with Gaussian kernel\",\"authors\":\"Guanhang Lei, Lei Shi\",\"doi\":\"10.1007/s10444-024-10165-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Regularized pairwise ranking with Gaussian kernels is one of the cutting-edge learning algorithms. Despite a wide range of applications, a rigorous theoretical demonstration still lacks to support the performance of such ranking estimators. This work aims to fill this gap by developing novel oracle inequalities for regularized pairwise ranking. With the help of these oracle inequalities, we derive fast learning rates of Gaussian ranking estimators under a general box-counting dimension assumption on the input domain combined with the noise conditions or the standard smoothness condition. Our theoretical analysis improves the existing estimates and shows that a low intrinsic dimension of input space can help the rates circumvent the curse of dimensionality.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":\"50 4\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-024-10165-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10165-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Regularized pairwise ranking with Gaussian kernels is one of the cutting-edge learning algorithms. Despite a wide range of applications, a rigorous theoretical demonstration still lacks to support the performance of such ranking estimators. This work aims to fill this gap by developing novel oracle inequalities for regularized pairwise ranking. With the help of these oracle inequalities, we derive fast learning rates of Gaussian ranking estimators under a general box-counting dimension assumption on the input domain combined with the noise conditions or the standard smoothness condition. Our theoretical analysis improves the existing estimates and shows that a low intrinsic dimension of input space can help the rates circumvent the curse of dimensionality.
期刊介绍:
Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis.
This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.