{"title":"Ag-Ag2S 核壳纳米粒子原子开关网络中的挥发性和非挥发性双模开关操作","authors":"Oradee Srikimkaew, Saverio Ricci, Matteo Porzani, Thien Tan Dang, Yusuke Nakaoka, Yuki Usami, Daniele Ielmini, Hirofumi Tanaka","doi":"10.1002/aelm.202300709","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a nanoparticle-based atomic switch network memristive device, capable of both volatile and nonvolatile switching operations, which have not been previously reported for this material. The operational modes can be determined by altering the compliance current, demonstrating high stability over 100 cycles. Analysis of the conduction mechanism using <i>I</i>–<i>V</i> curves reveals switching characteristics consistent with space-charge-limited current conduction during the set process and ohmic behavior in the reset state. Furthermore, this study analyzes these dual-operational modes in devices with varying electrode spacings. The results indicate that a wider spacing necessitated a higher compliance current for the volatile-to-nonvolatile transition, underscoring the significance of interconnection. These findings facilitate the integration of neuron and synapse functions within a single atomic switch network device, thereby advancing neuromorphic systems.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"10 10","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202300709","citationCount":"0","resultStr":"{\"title\":\"Volatile and Nonvolatile Dual-Mode Switching Operations in an Ag-Ag2S Core-Shell Nanoparticle Atomic Switch Network\",\"authors\":\"Oradee Srikimkaew, Saverio Ricci, Matteo Porzani, Thien Tan Dang, Yusuke Nakaoka, Yuki Usami, Daniele Ielmini, Hirofumi Tanaka\",\"doi\":\"10.1002/aelm.202300709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes a nanoparticle-based atomic switch network memristive device, capable of both volatile and nonvolatile switching operations, which have not been previously reported for this material. The operational modes can be determined by altering the compliance current, demonstrating high stability over 100 cycles. Analysis of the conduction mechanism using <i>I</i>–<i>V</i> curves reveals switching characteristics consistent with space-charge-limited current conduction during the set process and ohmic behavior in the reset state. Furthermore, this study analyzes these dual-operational modes in devices with varying electrode spacings. The results indicate that a wider spacing necessitated a higher compliance current for the volatile-to-nonvolatile transition, underscoring the significance of interconnection. These findings facilitate the integration of neuron and synapse functions within a single atomic switch network device, thereby advancing neuromorphic systems.</p>\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"10 10\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202300709\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aelm.202300709\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aelm.202300709","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Volatile and Nonvolatile Dual-Mode Switching Operations in an Ag-Ag2S Core-Shell Nanoparticle Atomic Switch Network
This paper proposes a nanoparticle-based atomic switch network memristive device, capable of both volatile and nonvolatile switching operations, which have not been previously reported for this material. The operational modes can be determined by altering the compliance current, demonstrating high stability over 100 cycles. Analysis of the conduction mechanism using I–V curves reveals switching characteristics consistent with space-charge-limited current conduction during the set process and ohmic behavior in the reset state. Furthermore, this study analyzes these dual-operational modes in devices with varying electrode spacings. The results indicate that a wider spacing necessitated a higher compliance current for the volatile-to-nonvolatile transition, underscoring the significance of interconnection. These findings facilitate the integration of neuron and synapse functions within a single atomic switch network device, thereby advancing neuromorphic systems.
期刊介绍:
Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.