{"title":"达西流与传输的混合可混合非连续伽勒金方法","authors":"Keegan L. A. Kirk, Beatrice Riviere","doi":"10.1007/s10915-024-02607-0","DOIUrl":null,"url":null,"abstract":"<p>A combined hybrid mixed and hybridizable discontinuous Galerkin method is formulated for the flow and transport equations. Convergence of the method is obtained by deriving optimal a priori error bounds in the L<span>\\(^2\\)</span> norm in space. Since the velocity in the transport equation depends on the flow problem, the stabilization parameter in the HDG method is a function of the discrete velocity. In addition, a key ingredient in the convergence proof is the construction of a projection that is shown to satisfy optimal approximation bounds. Numerical examples confirm the theoretical convergence rates and show the efficiency of high order discontinuous elements.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Combined Mixed Hybrid and Hybridizable Discontinuous Galerkin Method for Darcy Flow and Transport\",\"authors\":\"Keegan L. A. Kirk, Beatrice Riviere\",\"doi\":\"10.1007/s10915-024-02607-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A combined hybrid mixed and hybridizable discontinuous Galerkin method is formulated for the flow and transport equations. Convergence of the method is obtained by deriving optimal a priori error bounds in the L<span>\\\\(^2\\\\)</span> norm in space. Since the velocity in the transport equation depends on the flow problem, the stabilization parameter in the HDG method is a function of the discrete velocity. In addition, a key ingredient in the convergence proof is the construction of a projection that is shown to satisfy optimal approximation bounds. Numerical examples confirm the theoretical convergence rates and show the efficiency of high order discontinuous elements.\\n</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02607-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02607-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A Combined Mixed Hybrid and Hybridizable Discontinuous Galerkin Method for Darcy Flow and Transport
A combined hybrid mixed and hybridizable discontinuous Galerkin method is formulated for the flow and transport equations. Convergence of the method is obtained by deriving optimal a priori error bounds in the L\(^2\) norm in space. Since the velocity in the transport equation depends on the flow problem, the stabilization parameter in the HDG method is a function of the discrete velocity. In addition, a key ingredient in the convergence proof is the construction of a projection that is shown to satisfy optimal approximation bounds. Numerical examples confirm the theoretical convergence rates and show the efficiency of high order discontinuous elements.