二元数据时空模型及其在分析 COVID-19 传播方向中的应用

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY Asta-Advances in Statistical Analysis Pub Date : 2024-07-08 DOI:10.1007/s10182-024-00507-0
Anagh Chattopadhyay, Soudeep Deb
{"title":"二元数据时空模型及其在分析 COVID-19 传播方向中的应用","authors":"Anagh Chattopadhyay,&nbsp;Soudeep Deb","doi":"10.1007/s10182-024-00507-0","DOIUrl":null,"url":null,"abstract":"<div><p>It is often of primary interest to analyze and forecast the levels of a continuous phenomenon as a categorical variable. In this paper, we propose a new spatio-temporal model to deal with this problem in a binary setting, with an interesting application related to the COVID-19 pandemic, a phenomena that depends on both spatial proximity and temporal auto-correlation. Our model is defined through a hierarchical structure for the latent variable, which corresponds to the probit-link function. The mean of the latent variable in the proposed model is designed to capture the trend and the seasonal pattern as well as the lagged effects of relevant regressors. The covariance structure of the model is defined as an additive combination of a zero-mean spatio-temporally correlated process and a white noise process. The parameters associated with the space-time process enable us to analyze the effect of proximity of two points with respect to space or time and its influence on the overall process. For estimation and prediction, we adopt a complete Bayesian framework along with suitable prior specifications and utilize the concepts of Gibbs sampling. Using the county-level data from the state of New York, we show that the proposed methodology provides superior performance than benchmark techniques. We also use our model to devise a novel mechanism for predictive clustering which can be leveraged to develop localized policies.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":"108 4","pages":"823 - 851"},"PeriodicalIF":1.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A spatio-temporal model for binary data and its application in analyzing the direction of COVID-19 spread\",\"authors\":\"Anagh Chattopadhyay,&nbsp;Soudeep Deb\",\"doi\":\"10.1007/s10182-024-00507-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is often of primary interest to analyze and forecast the levels of a continuous phenomenon as a categorical variable. In this paper, we propose a new spatio-temporal model to deal with this problem in a binary setting, with an interesting application related to the COVID-19 pandemic, a phenomena that depends on both spatial proximity and temporal auto-correlation. Our model is defined through a hierarchical structure for the latent variable, which corresponds to the probit-link function. The mean of the latent variable in the proposed model is designed to capture the trend and the seasonal pattern as well as the lagged effects of relevant regressors. The covariance structure of the model is defined as an additive combination of a zero-mean spatio-temporally correlated process and a white noise process. The parameters associated with the space-time process enable us to analyze the effect of proximity of two points with respect to space or time and its influence on the overall process. For estimation and prediction, we adopt a complete Bayesian framework along with suitable prior specifications and utilize the concepts of Gibbs sampling. Using the county-level data from the state of New York, we show that the proposed methodology provides superior performance than benchmark techniques. We also use our model to devise a novel mechanism for predictive clustering which can be leveraged to develop localized policies.</p></div>\",\"PeriodicalId\":55446,\"journal\":{\"name\":\"Asta-Advances in Statistical Analysis\",\"volume\":\"108 4\",\"pages\":\"823 - 851\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asta-Advances in Statistical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10182-024-00507-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-024-00507-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

分析和预测作为分类变量的连续现象的水平通常是人们最感兴趣的问题。在本文中,我们提出了一种新的时空模型来处理二元设置中的这一问题,其有趣的应用与 COVID-19 大流行有关,这种现象既取决于空间邻近性,也取决于时间自相关性。我们的模型是通过潜变量的分层结构定义的,与 probit 链接函数相对应。拟议模型中潜变量的均值旨在捕捉趋势和季节模式以及相关回归因子的滞后效应。模型的协方差结构被定义为零均值时空相关过程和白噪声过程的加法组合。与时空过程相关的参数使我们能够分析两点在空间或时间上的接近程度及其对整个过程的影响。在估计和预测方面,我们采用了完整的贝叶斯框架和适当的先验规范,并利用了吉布斯抽样的概念。通过使用纽约州的县级数据,我们证明了所提出的方法比基准技术具有更优越的性能。我们还利用我们的模型设计了一种新颖的预测聚类机制,可用于制定本地化政策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A spatio-temporal model for binary data and its application in analyzing the direction of COVID-19 spread

It is often of primary interest to analyze and forecast the levels of a continuous phenomenon as a categorical variable. In this paper, we propose a new spatio-temporal model to deal with this problem in a binary setting, with an interesting application related to the COVID-19 pandemic, a phenomena that depends on both spatial proximity and temporal auto-correlation. Our model is defined through a hierarchical structure for the latent variable, which corresponds to the probit-link function. The mean of the latent variable in the proposed model is designed to capture the trend and the seasonal pattern as well as the lagged effects of relevant regressors. The covariance structure of the model is defined as an additive combination of a zero-mean spatio-temporally correlated process and a white noise process. The parameters associated with the space-time process enable us to analyze the effect of proximity of two points with respect to space or time and its influence on the overall process. For estimation and prediction, we adopt a complete Bayesian framework along with suitable prior specifications and utilize the concepts of Gibbs sampling. Using the county-level data from the state of New York, we show that the proposed methodology provides superior performance than benchmark techniques. We also use our model to devise a novel mechanism for predictive clustering which can be leveraged to develop localized policies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
期刊最新文献
Goodness-of-fit testing in bivariate count time series based on a bivariate dispersion index Bayesian joint relatively quantile regression of latent ordinal multivariate linear models with application to multirater agreement analysis A Finite-sample bias correction method for general linear model in the presence of differential measurement errors Classes of probability measures built on the properties of Benford’s law Publisher Correction: Deducing neighborhoods of classes from a fitted model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1