{"title":"高振荡系统的成本降低隐式指数 Runge-Kutta 方法","authors":"Xianfa Hu, Wansheng Wang, Bin Wang, Yonglei Fang","doi":"10.1007/s10910-024-01646-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, two novel classes of implicit exponential Runge–Kutta (ERK) methods are studied for solving highly oscillatory systems. First of all, symplectic conditions for two kinds of exponential integrators are derived, and we present a first-order symplectic method. High accurate implicit ERK methods (up to order four) are formulated by comparing the Taylor expansion of the exact solution, it is shown that the order conditions of two new kinds of exponential methods are identical to the order conditions of classical Runge–Kutta (RK) methods. Moreover, we investigate the linear stability properties of these exponential methods. Numerical examples not only present the long time energy preservation of the first-order symplectic method, but also illustrate the accuracy and efficiency of these formulated methods in comparison with standard ERK methods.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"62 9","pages":"2191 - 2221"},"PeriodicalIF":1.7000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cost-reduction implicit exponential Runge–Kutta methods for highly oscillatory systems\",\"authors\":\"Xianfa Hu, Wansheng Wang, Bin Wang, Yonglei Fang\",\"doi\":\"10.1007/s10910-024-01646-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, two novel classes of implicit exponential Runge–Kutta (ERK) methods are studied for solving highly oscillatory systems. First of all, symplectic conditions for two kinds of exponential integrators are derived, and we present a first-order symplectic method. High accurate implicit ERK methods (up to order four) are formulated by comparing the Taylor expansion of the exact solution, it is shown that the order conditions of two new kinds of exponential methods are identical to the order conditions of classical Runge–Kutta (RK) methods. Moreover, we investigate the linear stability properties of these exponential methods. Numerical examples not only present the long time energy preservation of the first-order symplectic method, but also illustrate the accuracy and efficiency of these formulated methods in comparison with standard ERK methods.</p></div>\",\"PeriodicalId\":648,\"journal\":{\"name\":\"Journal of Mathematical Chemistry\",\"volume\":\"62 9\",\"pages\":\"2191 - 2221\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10910-024-01646-0\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10910-024-01646-0","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Cost-reduction implicit exponential Runge–Kutta methods for highly oscillatory systems
In this paper, two novel classes of implicit exponential Runge–Kutta (ERK) methods are studied for solving highly oscillatory systems. First of all, symplectic conditions for two kinds of exponential integrators are derived, and we present a first-order symplectic method. High accurate implicit ERK methods (up to order four) are formulated by comparing the Taylor expansion of the exact solution, it is shown that the order conditions of two new kinds of exponential methods are identical to the order conditions of classical Runge–Kutta (RK) methods. Moreover, we investigate the linear stability properties of these exponential methods. Numerical examples not only present the long time energy preservation of the first-order symplectic method, but also illustrate the accuracy and efficiency of these formulated methods in comparison with standard ERK methods.
期刊介绍:
The Journal of Mathematical Chemistry (JOMC) publishes original, chemically important mathematical results which use non-routine mathematical methodologies often unfamiliar to the usual audience of mainstream experimental and theoretical chemistry journals. Furthermore JOMC publishes papers on novel applications of more familiar mathematical techniques and analyses of chemical problems which indicate the need for new mathematical approaches.
Mathematical chemistry is a truly interdisciplinary subject, a field of rapidly growing importance. As chemistry becomes more and more amenable to mathematically rigorous study, it is likely that chemistry will also become an alert and demanding consumer of new mathematical results. The level of complexity of chemical problems is often very high, and modeling molecular behaviour and chemical reactions does require new mathematical approaches. Chemistry is witnessing an important shift in emphasis: simplistic models are no longer satisfactory, and more detailed mathematical understanding of complex chemical properties and phenomena are required. From theoretical chemistry and quantum chemistry to applied fields such as molecular modeling, drug design, molecular engineering, and the development of supramolecular structures, mathematical chemistry is an important discipline providing both explanations and predictions. JOMC has an important role in advancing chemistry to an era of detailed understanding of molecules and reactions.