液态十二烷和水平射流的分子束散射

Walt Yang, Madison M. Foreman, Steven Saric, Alec M. Wodtke, Kevin R. Wilson, Daniel M. Neumark
{"title":"液态十二烷和水平射流的分子束散射","authors":"Walt Yang, Madison M. Foreman, Steven Saric, Alec M. Wodtke, Kevin R. Wilson, Daniel M. Neumark","doi":"10.1002/ntls.20240009","DOIUrl":null,"url":null,"abstract":"<jats:label/>Molecular beam experiments in which gas molecules are scattered from liquids provide detailed, microscopic perspectives on the gas–liquid interface. Extending these methods to volatile liquids while maintaining the ability to measure product energy and angular distributions presents a significant challenge. The incorporation of flat liquid jets into molecular beam scattering experiments in our laboratory has allowed us to demonstrate their utility in uncovering dynamics in this complex chemical environment. Here, we summarize recent work on the evaporation and scattering of Ne, CD<jats:sub>4</jats:sub>, ND<jats:sub>3</jats:sub>, and D<jats:sub>2</jats:sub>O from a dodecane flat liquid jet and present first results on the evaporation and scattering of Ar from a cold salty water jet. In the evaporation experiments, Maxwell–Boltzmann flux distributions with a cos<jats:italic>θ</jats:italic> angular distribution are observed. Scattering experiments reveal both impulsive scattering (IS) and trapping followed by thermal desorption (TD). Super‐specular scattering is observed for all four species scattered from dodecane and is attributed to anisotropic momentum transfer to the liquid surface. In the IS channel, rotational excitation of the polyatomic scatterers is a significant energy sink, and these species accommodate more readily on the dodecane surface compared to Ne. Our preliminary results on cold salty water jets suggest that Ar atoms undergo some vapor‐phase collisions when evaporating from the liquid surface. Initial scattering experiments characterize the mechanisms of Ar interacting with an aqueous jet, allowing for comparison to dodecane systems.Key Points<jats:list list-type=\"bullet\"> <jats:list-item>Molecular beam scattering from flat liquid jets is a powerful technique to elucidate mechanistic detail at the gas–liquid interface.</jats:list-item> <jats:list-item>Previous dodecane scattering experiments have uncovered angularly‐resolved thermal desorption fractions and energy transfer at the interface for several small molecule scatterers.</jats:list-item> <jats:list-item>Preliminary results on scattering from cold salty water reveal mechanisms of interaction between argon and an aqueous jet.</jats:list-item> </jats:list>","PeriodicalId":501225,"journal":{"name":"Natural Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular beam scattering from flat jets of liquid dodecane and water\",\"authors\":\"Walt Yang, Madison M. Foreman, Steven Saric, Alec M. Wodtke, Kevin R. Wilson, Daniel M. Neumark\",\"doi\":\"10.1002/ntls.20240009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:label/>Molecular beam experiments in which gas molecules are scattered from liquids provide detailed, microscopic perspectives on the gas–liquid interface. Extending these methods to volatile liquids while maintaining the ability to measure product energy and angular distributions presents a significant challenge. The incorporation of flat liquid jets into molecular beam scattering experiments in our laboratory has allowed us to demonstrate their utility in uncovering dynamics in this complex chemical environment. Here, we summarize recent work on the evaporation and scattering of Ne, CD<jats:sub>4</jats:sub>, ND<jats:sub>3</jats:sub>, and D<jats:sub>2</jats:sub>O from a dodecane flat liquid jet and present first results on the evaporation and scattering of Ar from a cold salty water jet. In the evaporation experiments, Maxwell–Boltzmann flux distributions with a cos<jats:italic>θ</jats:italic> angular distribution are observed. Scattering experiments reveal both impulsive scattering (IS) and trapping followed by thermal desorption (TD). Super‐specular scattering is observed for all four species scattered from dodecane and is attributed to anisotropic momentum transfer to the liquid surface. In the IS channel, rotational excitation of the polyatomic scatterers is a significant energy sink, and these species accommodate more readily on the dodecane surface compared to Ne. Our preliminary results on cold salty water jets suggest that Ar atoms undergo some vapor‐phase collisions when evaporating from the liquid surface. Initial scattering experiments characterize the mechanisms of Ar interacting with an aqueous jet, allowing for comparison to dodecane systems.Key Points<jats:list list-type=\\\"bullet\\\"> <jats:list-item>Molecular beam scattering from flat liquid jets is a powerful technique to elucidate mechanistic detail at the gas–liquid interface.</jats:list-item> <jats:list-item>Previous dodecane scattering experiments have uncovered angularly‐resolved thermal desorption fractions and energy transfer at the interface for several small molecule scatterers.</jats:list-item> <jats:list-item>Preliminary results on scattering from cold salty water reveal mechanisms of interaction between argon and an aqueous jet.</jats:list-item> </jats:list>\",\"PeriodicalId\":501225,\"journal\":{\"name\":\"Natural Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/ntls.20240009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ntls.20240009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在分子束实验中,气体分子会从液体中散射出来,从而为气液界面提供了详细的微观视角。将这些方法扩展到挥发性液体,同时保持测量产物能量和角度分布的能力,是一项重大挑战。在我们实验室的分子束散射实验中加入平面液体射流,使我们能够证明它们在揭示这种复杂化学环境中的动力学方面的实用性。在此,我们总结了最近在十二烷平液体射流中 Ne、CD4、ND3 和 D2O 的蒸发和散射方面的工作,并首次展示了冷盐水射流中 Ar 的蒸发和散射结果。在蒸发实验中,观察到具有 cosθ 角分布的 Maxwell-Boltzmann 流量分布。散射实验显示了脉冲散射(IS)和热解吸后的捕获(TD)。从十二烷中散射出的所有四种物质都出现了超奇异散射,这归因于向液体表面的各向异性动量传递。在 IS 通道中,多原子散射体的旋转激发是一个重要的能量汇,与 Ne 相比,这些物质在十二烷表面更容易容纳。我们对冷盐水喷射的初步研究结果表明,氩原子从液面蒸发时会发生一些气相碰撞。最初的散射实验描述了氩原子与水喷流相互作用的机理,可与十二烷系统进行比较。之前的十二烷散射实验揭示了几种小分子散射体在界面上的角分辨热解吸分数和能量转移。冷盐水散射的初步结果揭示了氩气和水喷射之间的相互作用机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular beam scattering from flat jets of liquid dodecane and water
Molecular beam experiments in which gas molecules are scattered from liquids provide detailed, microscopic perspectives on the gas–liquid interface. Extending these methods to volatile liquids while maintaining the ability to measure product energy and angular distributions presents a significant challenge. The incorporation of flat liquid jets into molecular beam scattering experiments in our laboratory has allowed us to demonstrate their utility in uncovering dynamics in this complex chemical environment. Here, we summarize recent work on the evaporation and scattering of Ne, CD4, ND3, and D2O from a dodecane flat liquid jet and present first results on the evaporation and scattering of Ar from a cold salty water jet. In the evaporation experiments, Maxwell–Boltzmann flux distributions with a cosθ angular distribution are observed. Scattering experiments reveal both impulsive scattering (IS) and trapping followed by thermal desorption (TD). Super‐specular scattering is observed for all four species scattered from dodecane and is attributed to anisotropic momentum transfer to the liquid surface. In the IS channel, rotational excitation of the polyatomic scatterers is a significant energy sink, and these species accommodate more readily on the dodecane surface compared to Ne. Our preliminary results on cold salty water jets suggest that Ar atoms undergo some vapor‐phase collisions when evaporating from the liquid surface. Initial scattering experiments characterize the mechanisms of Ar interacting with an aqueous jet, allowing for comparison to dodecane systems.Key Points Molecular beam scattering from flat liquid jets is a powerful technique to elucidate mechanistic detail at the gas–liquid interface. Previous dodecane scattering experiments have uncovered angularly‐resolved thermal desorption fractions and energy transfer at the interface for several small molecule scatterers. Preliminary results on scattering from cold salty water reveal mechanisms of interaction between argon and an aqueous jet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
First direct detection of large polycyclic aromatic hydrocarbons on asteroid (162173) Ryugu samples: An interstellar heritage Thermoring basis for heat unfolding‐induced inactivation in TRPV1 Commentary on “A simple, practical experiment to investigate atomic wavefunction reduction within a Stern‐Gerlach magnet” by Michael Devereux, published in J. Phys. B: At. Mol. Opt. Phys. 57, 152501 (2024), https://doi.org/10.1088/1361‐6455/ad5992 How inoculation saved the world: A timely acknowledgment of the contribution of an English lady Issue Information ‐ TOC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1