由碳纳米管和希夫碱共价有机框架组成的核壳异质结构具有卓越的阳极储锂性能

IF 13 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Energy & Environmental Materials Pub Date : 2024-07-09 DOI:10.1002/eem2.12797
Nan Jiang, Mengpei Qi, Yalong Jiang, Yin Fan, Shiwei Jin, Yingkui Yang
{"title":"由碳纳米管和希夫碱共价有机框架组成的核壳异质结构具有卓越的阳极储锂性能","authors":"Nan Jiang,&nbsp;Mengpei Qi,&nbsp;Yalong Jiang,&nbsp;Yin Fan,&nbsp;Shiwei Jin,&nbsp;Yingkui Yang","doi":"10.1002/eem2.12797","DOIUrl":null,"url":null,"abstract":"<p>Covalent organic frameworks (COFs) after undergoing the superlithiation process promise high-capacity anodes while suffering from sluggish reaction kinetics and low electrochemical utilization of redox-active sites. Herein, integrating carbon nanotubes (CNTs) with imine-linked covalent organic frameworks (COFs) was rationally executed by in-situ Schiff-base condensation between 1,1′-biphenyl]-3,3′,5,5′-tetracarbaldehyde and 1,4-diaminobenzene in the presence of CNTs to produce core–shell heterostructured composites (CNT@COF). Accordingly, the redox-active shell of COF nanoparticles around one-dimensional conductive CNTs synergistically creates robust three-dimensional hybrid architectures with high specific surface area, thus promoting electron transport and affording abundant active functional groups accessible for electrochemical utilization throughout the whole electrode. Remarkably, upon the full activation with a superlithiation process, the as-fabricated CNT@COF anode achieves a specific capacity of 2324 mAh g<sup>−1</sup>, which is the highest specific capacity among organic electrode materials reported so far. Meanwhile, the superior rate capability and excellent cycling stability are also obtained. The redox reaction mechanisms for the COF moiety were further revealed by Fourier-transform infrared spectroscopy in conjunction with X-ray photoelectron spectroscopy, involving the reversible redox reactions between lithium ions and C=N groups and gradual electrochemical activation of the unsaturated C=C bonds within COFs.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12797","citationCount":"0","resultStr":"{\"title\":\"Superior Anodic Lithium Storage in Core–Shell Heterostructures Composed of Carbon Nanotubes and Schiff-Base Covalent Organic Frameworks\",\"authors\":\"Nan Jiang,&nbsp;Mengpei Qi,&nbsp;Yalong Jiang,&nbsp;Yin Fan,&nbsp;Shiwei Jin,&nbsp;Yingkui Yang\",\"doi\":\"10.1002/eem2.12797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Covalent organic frameworks (COFs) after undergoing the superlithiation process promise high-capacity anodes while suffering from sluggish reaction kinetics and low electrochemical utilization of redox-active sites. Herein, integrating carbon nanotubes (CNTs) with imine-linked covalent organic frameworks (COFs) was rationally executed by in-situ Schiff-base condensation between 1,1′-biphenyl]-3,3′,5,5′-tetracarbaldehyde and 1,4-diaminobenzene in the presence of CNTs to produce core–shell heterostructured composites (CNT@COF). Accordingly, the redox-active shell of COF nanoparticles around one-dimensional conductive CNTs synergistically creates robust three-dimensional hybrid architectures with high specific surface area, thus promoting electron transport and affording abundant active functional groups accessible for electrochemical utilization throughout the whole electrode. Remarkably, upon the full activation with a superlithiation process, the as-fabricated CNT@COF anode achieves a specific capacity of 2324 mAh g<sup>−1</sup>, which is the highest specific capacity among organic electrode materials reported so far. Meanwhile, the superior rate capability and excellent cycling stability are also obtained. The redox reaction mechanisms for the COF moiety were further revealed by Fourier-transform infrared spectroscopy in conjunction with X-ray photoelectron spectroscopy, involving the reversible redox reactions between lithium ions and C=N groups and gradual electrochemical activation of the unsaturated C=C bonds within COFs.</p>\",\"PeriodicalId\":11554,\"journal\":{\"name\":\"Energy & Environmental Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12797\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12797\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12797","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

共价有机框架(COFs)在经历超石灰化过程后有望成为高容量阳极,但却存在反应动力学迟缓、氧化还原活性位点电化学利用率低等问题。本文通过 1,1′-联苯]-3,3′,5,5′-四甲醛和 1,4-二氨基苯在 CNT 存在下的原位席夫碱缩合反应,合理地将碳纳米管(CNT)与亚胺连接的共价有机框架(COF)整合在一起,生成核壳异质结构复合材料(CNT@COF)。因此,一维导电 CNT 周围的 COF 纳米颗粒氧化还原活性外壳协同形成了具有高比表面积的坚固三维混合架构,从而促进了电子传输,并为整个电极提供了丰富的活性官能团供电化学利用。值得注意的是,经超层析过程完全活化后,制备的 CNT@COF 阳极的比容量达到 2324 mAh g-1,是迄今为止报道的有机电极材料中比容量最高的。同时,还获得了优异的速率能力和优良的循环稳定性。傅立叶变换红外光谱和 X 射线光电子能谱进一步揭示了 COF 分子的氧化还原反应机理,涉及锂离子与 C=N 基团之间的可逆氧化还原反应以及 COF 中不饱和 C=C 键的逐步电化学活化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Superior Anodic Lithium Storage in Core–Shell Heterostructures Composed of Carbon Nanotubes and Schiff-Base Covalent Organic Frameworks

Covalent organic frameworks (COFs) after undergoing the superlithiation process promise high-capacity anodes while suffering from sluggish reaction kinetics and low electrochemical utilization of redox-active sites. Herein, integrating carbon nanotubes (CNTs) with imine-linked covalent organic frameworks (COFs) was rationally executed by in-situ Schiff-base condensation between 1,1′-biphenyl]-3,3′,5,5′-tetracarbaldehyde and 1,4-diaminobenzene in the presence of CNTs to produce core–shell heterostructured composites (CNT@COF). Accordingly, the redox-active shell of COF nanoparticles around one-dimensional conductive CNTs synergistically creates robust three-dimensional hybrid architectures with high specific surface area, thus promoting electron transport and affording abundant active functional groups accessible for electrochemical utilization throughout the whole electrode. Remarkably, upon the full activation with a superlithiation process, the as-fabricated CNT@COF anode achieves a specific capacity of 2324 mAh g−1, which is the highest specific capacity among organic electrode materials reported so far. Meanwhile, the superior rate capability and excellent cycling stability are also obtained. The redox reaction mechanisms for the COF moiety were further revealed by Fourier-transform infrared spectroscopy in conjunction with X-ray photoelectron spectroscopy, involving the reversible redox reactions between lithium ions and C=N groups and gradual electrochemical activation of the unsaturated C=C bonds within COFs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Environmental Materials
Energy & Environmental Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
17.60
自引率
6.00%
发文量
66
期刊介绍: Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.
期刊最新文献
Issue Information Unveiling the Role of Electrocatalysts Activation for Iron-Doped Ni Oxyhydroxide in Enhancing the Catalytic Performance of Oxygen Evolution Reaction Unraveling the Morphological and Energetic Properties of 2PACz Self-Assembled Monolayers Fabricated With Upscaling Deposition Methods Covalently Anchoring and In Situ Electrochemical Activation of Conductive Selenophene-Organic Matrix-Driven High-Efficiency Potassium Organic Batteries A Practical Zinc Metal Anode Coating Strategy Utilizing Bulk h-BN and Improved Hydrogen Redox Kinetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1