山羊草(Ageratum conyzoides L.):对印度东高止山植物多样性的生物威胁

IF 2.1 4区 生物学 Q2 BIOLOGY Journal of Biosciences Pub Date : 2024-07-10 DOI:10.1007/s12038-024-00455-6
Prakash Paraseth, Kakoli Banerjee
{"title":"山羊草(Ageratum conyzoides L.):对印度东高止山植物多样性的生物威胁","authors":"Prakash Paraseth, Kakoli Banerjee","doi":"10.1007/s12038-024-00455-6","DOIUrl":null,"url":null,"abstract":"<p>The Kunming–Montreal Global Biodiversity Framework (GBF) is a recently signed protocol by the conference of the parties (COP 15) with an aim to protect biodiversity from risks imposed by biological threats such as invasive alien species (IAS). The present work is an effort to meet target 6 of GBF which directly deals with IAS by assessing the current and future distribution of <i>Ageratum</i> species in regions of the Eastern Ghats of India. Prediction of <i>Ageratum</i> distribution was done based on greenhouse gas emission levels, namely RCP 4.5, 6.0 and 8.5 for the climatic years 2030, 2050 and 2080. Of a total of 23 environmental parameters (19 bioclimatic, 1 land use land cover (LULC) and 3 topographic) seven were selected for species distribution modeling (SDM) considering value inflation factor (VIF) scores &lt;3 by using maximum entropy. In the current climatic scenario, 40.09% of the geographical area (TGA) is covered by <i>Ageratum</i> species which will reach 76.51%, 77.44%, 82.58% for RCP 4.5, 6.0 and 8.5 respectively by the end of 2100. Both the AUC value (0.884) and Jackknife test have shown a good model performance. The Eastern Ghats, being a biodiversity-rich zone, needs efficient conservation and management strategies to decrease the extent of invaded areas to maximize biodiversity returns.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"25 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Goat weed (Ageratum conyzoides L.): A biological threat to plant diversity in Eastern Ghats of India\",\"authors\":\"Prakash Paraseth, Kakoli Banerjee\",\"doi\":\"10.1007/s12038-024-00455-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Kunming–Montreal Global Biodiversity Framework (GBF) is a recently signed protocol by the conference of the parties (COP 15) with an aim to protect biodiversity from risks imposed by biological threats such as invasive alien species (IAS). The present work is an effort to meet target 6 of GBF which directly deals with IAS by assessing the current and future distribution of <i>Ageratum</i> species in regions of the Eastern Ghats of India. Prediction of <i>Ageratum</i> distribution was done based on greenhouse gas emission levels, namely RCP 4.5, 6.0 and 8.5 for the climatic years 2030, 2050 and 2080. Of a total of 23 environmental parameters (19 bioclimatic, 1 land use land cover (LULC) and 3 topographic) seven were selected for species distribution modeling (SDM) considering value inflation factor (VIF) scores &lt;3 by using maximum entropy. In the current climatic scenario, 40.09% of the geographical area (TGA) is covered by <i>Ageratum</i> species which will reach 76.51%, 77.44%, 82.58% for RCP 4.5, 6.0 and 8.5 respectively by the end of 2100. Both the AUC value (0.884) and Jackknife test have shown a good model performance. The Eastern Ghats, being a biodiversity-rich zone, needs efficient conservation and management strategies to decrease the extent of invaded areas to maximize biodiversity returns.</p>\",\"PeriodicalId\":15171,\"journal\":{\"name\":\"Journal of Biosciences\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12038-024-00455-6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12038-024-00455-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

昆明-蒙特利尔全球生物多样性框架(GBF)是缔约方大会(COP 15)最近签署的一项议定书,旨在保护生物多样性免受外来入侵物种(IAS)等生物威胁带来的风险。本研究通过评估印度东高止山脉地区龙舌兰物种目前和未来的分布情况,努力实现《生物多样性框架》中直接涉及外来入侵物种的目标 6。根据 2030、2050 和 2080 气候年的温室气体排放水平,即 RCP 4.5、6.0 和 8.5,对龙舌兰的分布进行了预测。在总共 23 个环境参数(19 个生物气候参数、1 个土地利用土地覆被参数(LULC)和 3 个地形参数)中,考虑到价值膨胀因子(VIF)分数 <3,使用最大熵法选择了 7 个参数进行物种分布建模(SDM)。在当前气候情景下,40.09%的地理区域(TGA)被龙舌兰物种覆盖,到 2100 年底,在 RCP 4.5、6.0 和 8.5 条件下,这一比例将分别达到 76.51%、77.44% 和 82.58%。AUC值(0.884)和积刀检验都显示了模型的良好性能。东高止山脉是生物多样性丰富的地区,需要有效的保护和管理策略来减少入侵区域的范围,从而最大限度地提高生物多样性回报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Goat weed (Ageratum conyzoides L.): A biological threat to plant diversity in Eastern Ghats of India

The Kunming–Montreal Global Biodiversity Framework (GBF) is a recently signed protocol by the conference of the parties (COP 15) with an aim to protect biodiversity from risks imposed by biological threats such as invasive alien species (IAS). The present work is an effort to meet target 6 of GBF which directly deals with IAS by assessing the current and future distribution of Ageratum species in regions of the Eastern Ghats of India. Prediction of Ageratum distribution was done based on greenhouse gas emission levels, namely RCP 4.5, 6.0 and 8.5 for the climatic years 2030, 2050 and 2080. Of a total of 23 environmental parameters (19 bioclimatic, 1 land use land cover (LULC) and 3 topographic) seven were selected for species distribution modeling (SDM) considering value inflation factor (VIF) scores <3 by using maximum entropy. In the current climatic scenario, 40.09% of the geographical area (TGA) is covered by Ageratum species which will reach 76.51%, 77.44%, 82.58% for RCP 4.5, 6.0 and 8.5 respectively by the end of 2100. Both the AUC value (0.884) and Jackknife test have shown a good model performance. The Eastern Ghats, being a biodiversity-rich zone, needs efficient conservation and management strategies to decrease the extent of invaded areas to maximize biodiversity returns.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biosciences
Journal of Biosciences 生物-生物学
CiteScore
5.80
自引率
0.00%
发文量
83
审稿时长
3 months
期刊介绍: The Journal of Biosciences is a quarterly journal published by the Indian Academy of Sciences, Bangalore. It covers all areas of Biology and is the premier journal in the country within its scope. It is indexed in Current Contents and other standard Biological and Medical databases. The Journal of Biosciences began in 1934 as the Proceedings of the Indian Academy of Sciences (Section B). This continued until 1978 when it was split into three parts : Proceedings-Animal Sciences, Proceedings-Plant Sciences and Proceedings-Experimental Biology. Proceedings-Experimental Biology was renamed Journal of Biosciences in 1979; and in 1991, Proceedings-Animal Sciences and Proceedings-Plant Sciences merged with it.
期刊最新文献
Comparative analysis of Quercus suber L. acorns in natural and semi-natural stands: Morphology characterization, insect attacks, and chemical composition Phosphorylation mapping of laminin γ1-chain: Kinases, functional interaction sequences, and phosphorylation-interfering cancer mutations IRF9 and STAT1 as biomarkers involved in T-cell immunity in atherosclerosis Wisdom of (molecular) crowds: How a snake’s temperature-sensing superpower separates information from misinformation CDCA: Community detection in RNA-seq data using centrality-based approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1