Alex Destrieux, Williams M. Caceres Ferreira, Zachary Costantino, Jacopo Profili, Gaetan Laroche
{"title":"氮气中常压介质阻挡层放电的光学发射特征:聚四氟乙烯蚀刻过程中的 CN 发射演变","authors":"Alex Destrieux, Williams M. Caceres Ferreira, Zachary Costantino, Jacopo Profili, Gaetan Laroche","doi":"10.1002/ppap.202400036","DOIUrl":null,"url":null,"abstract":"The present work investigates the etching of coated polytetrafluoroethylene (PTFE) films using an atmospheric pressure dielectric barrier discharge operating in nitrogen in a filamentary regime. For different treatment durations, the optical emission spectra were recorded over time. Most of the emissions are attributed to the N<jats:sub>2</jats:sub> second positive system. The presence of CN is also observed, and its emissions rise with the exposure time of PTFE. This rise is attributed to the density of CN produced. The X‐ray photoelectron spectroscopy surface characterization suggests two etching regimes. This is linked with a change in slope in the intensity evolution of the optical emissions of the CN. At longer times, a fluorinated deposit on the electrode is observed, confirming a different nature of the etched material.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"2 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical emission characterization of an atmospheric pressure dielectric barrier discharge in nitrogen: Evolution of CN emissions during PTFE etching\",\"authors\":\"Alex Destrieux, Williams M. Caceres Ferreira, Zachary Costantino, Jacopo Profili, Gaetan Laroche\",\"doi\":\"10.1002/ppap.202400036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work investigates the etching of coated polytetrafluoroethylene (PTFE) films using an atmospheric pressure dielectric barrier discharge operating in nitrogen in a filamentary regime. For different treatment durations, the optical emission spectra were recorded over time. Most of the emissions are attributed to the N<jats:sub>2</jats:sub> second positive system. The presence of CN is also observed, and its emissions rise with the exposure time of PTFE. This rise is attributed to the density of CN produced. The X‐ray photoelectron spectroscopy surface characterization suggests two etching regimes. This is linked with a change in slope in the intensity evolution of the optical emissions of the CN. At longer times, a fluorinated deposit on the electrode is observed, confirming a different nature of the etched material.\",\"PeriodicalId\":20135,\"journal\":{\"name\":\"Plasma Processes and Polymers\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Processes and Polymers\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/ppap.202400036\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Processes and Polymers","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/ppap.202400036","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Optical emission characterization of an atmospheric pressure dielectric barrier discharge in nitrogen: Evolution of CN emissions during PTFE etching
The present work investigates the etching of coated polytetrafluoroethylene (PTFE) films using an atmospheric pressure dielectric barrier discharge operating in nitrogen in a filamentary regime. For different treatment durations, the optical emission spectra were recorded over time. Most of the emissions are attributed to the N2 second positive system. The presence of CN is also observed, and its emissions rise with the exposure time of PTFE. This rise is attributed to the density of CN produced. The X‐ray photoelectron spectroscopy surface characterization suggests two etching regimes. This is linked with a change in slope in the intensity evolution of the optical emissions of the CN. At longer times, a fluorinated deposit on the electrode is observed, confirming a different nature of the etched material.
期刊介绍:
Plasma Processes & Polymers focuses on the interdisciplinary field of low temperature plasma science, covering both experimental and theoretical aspects of fundamental and applied research in materials science, physics, chemistry and engineering in the area of plasma sources and plasma-based treatments.