{"title":"阿加曲班和铜改性聚合物具有更好的抗血栓和抗菌性能","authors":"Liana Azizova, Volodymyr Chernyshenko, Daria Korolova, Iain U. Allan, Sergey Mikhalovsky, Lyuba Mikhalovska","doi":"10.1557/s43578-024-01389-3","DOIUrl":null,"url":null,"abstract":"<p>This paper describes a novel approach the development of biocompatible polyvinyl chloride (PVC) and polyurethane (PU) polymers, modified with copper (II) ions followed by the immobilisation the thrombin inhibitor argatroban (AG) using dopamine chemistry. The surface loading of the immobilised AG was 6.06 µg cm<sup>−2</sup> on PVC and 6.66 µg cm<sup>−2</sup> on PU, confirmed by FTIR and inhibitor concentration measurements. Both AG/Cu-modified polymers produced NO by catalytically decomposing S-nitrosothiol, reaching NO levels in plasma of 0.59 × 10<sup>–10</sup> <span>\\(\\text{mol} \\, {\\text{cm}}^{-2} \\, {\\text{min}}^{-1}\\)</span> for AG/Cu-PVC and 0.51 × 10<sup>–10</sup> <span>\\(\\text{mol} \\, {\\text{cm}}^{-2} \\, {\\text{min}}^{-1}\\)</span> for AG/Cu-PU, matching endothelial cell-produced physiological levels. This modification improved the haemocompatibility of the polymers through thrombin inhibition and reduced platelet aggregation and adhesion. Additionally, both modified polymers inhibited <i>Staphylococcus aureus</i> adhesion, growth and viability, confirming their acquired antibacterial properties. Antibacterial activity against <i>Escherichia coli</i> was also observed. These results demonstrate that modifying PVC and PU surfaces with copper (II) and AG produced materials with dual antithrombotic and antibacterial functions.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":16306,"journal":{"name":"Journal of Materials Research","volume":"23 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Argatroban- and copper-modified polymers with improved thromboresistance and antimicrobial properties\",\"authors\":\"Liana Azizova, Volodymyr Chernyshenko, Daria Korolova, Iain U. Allan, Sergey Mikhalovsky, Lyuba Mikhalovska\",\"doi\":\"10.1557/s43578-024-01389-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper describes a novel approach the development of biocompatible polyvinyl chloride (PVC) and polyurethane (PU) polymers, modified with copper (II) ions followed by the immobilisation the thrombin inhibitor argatroban (AG) using dopamine chemistry. The surface loading of the immobilised AG was 6.06 µg cm<sup>−2</sup> on PVC and 6.66 µg cm<sup>−2</sup> on PU, confirmed by FTIR and inhibitor concentration measurements. Both AG/Cu-modified polymers produced NO by catalytically decomposing S-nitrosothiol, reaching NO levels in plasma of 0.59 × 10<sup>–10</sup> <span>\\\\(\\\\text{mol} \\\\, {\\\\text{cm}}^{-2} \\\\, {\\\\text{min}}^{-1}\\\\)</span> for AG/Cu-PVC and 0.51 × 10<sup>–10</sup> <span>\\\\(\\\\text{mol} \\\\, {\\\\text{cm}}^{-2} \\\\, {\\\\text{min}}^{-1}\\\\)</span> for AG/Cu-PU, matching endothelial cell-produced physiological levels. This modification improved the haemocompatibility of the polymers through thrombin inhibition and reduced platelet aggregation and adhesion. Additionally, both modified polymers inhibited <i>Staphylococcus aureus</i> adhesion, growth and viability, confirming their acquired antibacterial properties. Antibacterial activity against <i>Escherichia coli</i> was also observed. These results demonstrate that modifying PVC and PU surfaces with copper (II) and AG produced materials with dual antithrombotic and antibacterial functions.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":16306,\"journal\":{\"name\":\"Journal of Materials Research\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43578-024-01389-3\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43578-024-01389-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了一种新方法,即开发生物相容性聚氯乙烯(PVC)和聚氨酯(PU)聚合物,用铜(II)离子修饰,然后用多巴胺化学法固定凝血酶抑制剂阿加曲班(AG)。经傅立叶变换红外光谱和抑制剂浓度测量证实,固定 AG 的表面负载量在 PVC 上为 6.06 µg cm-2,在 PU 上为 6.66 µg cm-2。两种 AG/Cu 改性聚合物都能通过催化分解 S-亚硝基硫醇产生 NO,血浆中的 NO 含量分别为:AG/Cu-PVC 0.59 × 10-10 \(text{mol}\,{text{cm}}^{-2} \,{text{min}}^{-1}\),PU 0.51 × 10-10 \(text{min}}^{-1}\)。51 × 10-10 \(\text{mol} \, {\text{cm}}^{-2} \, {\text{min}}^{-1}\) ,符合内皮细胞产生的生理水平。这种改性通过抑制凝血酶改善了聚合物的血液相容性,并降低了血小板的聚集和粘附。此外,这两种改性聚合物都能抑制金黄色葡萄球菌的粘附、生长和存活,证实了它们的抗菌特性。还观察到了对大肠杆菌的抗菌活性。这些结果表明,用铜(II)和 AG 对聚氯乙烯和聚氨酯表面进行改性,可制成具有抗血栓和抗菌双重功能的材料。
Argatroban- and copper-modified polymers with improved thromboresistance and antimicrobial properties
This paper describes a novel approach the development of biocompatible polyvinyl chloride (PVC) and polyurethane (PU) polymers, modified with copper (II) ions followed by the immobilisation the thrombin inhibitor argatroban (AG) using dopamine chemistry. The surface loading of the immobilised AG was 6.06 µg cm−2 on PVC and 6.66 µg cm−2 on PU, confirmed by FTIR and inhibitor concentration measurements. Both AG/Cu-modified polymers produced NO by catalytically decomposing S-nitrosothiol, reaching NO levels in plasma of 0.59 × 10–10\(\text{mol} \, {\text{cm}}^{-2} \, {\text{min}}^{-1}\) for AG/Cu-PVC and 0.51 × 10–10\(\text{mol} \, {\text{cm}}^{-2} \, {\text{min}}^{-1}\) for AG/Cu-PU, matching endothelial cell-produced physiological levels. This modification improved the haemocompatibility of the polymers through thrombin inhibition and reduced platelet aggregation and adhesion. Additionally, both modified polymers inhibited Staphylococcus aureus adhesion, growth and viability, confirming their acquired antibacterial properties. Antibacterial activity against Escherichia coli was also observed. These results demonstrate that modifying PVC and PU surfaces with copper (II) and AG produced materials with dual antithrombotic and antibacterial functions.
期刊介绍:
Journal of Materials Research (JMR) publishes the latest advances about the creation of new materials and materials with novel functionalities, fundamental understanding of processes that control the response of materials, and development of materials with significant performance improvements relative to state of the art materials. JMR welcomes papers that highlight novel processing techniques, the application and development of new analytical tools, and interpretation of fundamental materials science to achieve enhanced materials properties and uses. Materials research papers in the following topical areas are welcome.
• Novel materials discovery
• Electronic, photonic and magnetic materials
• Energy Conversion and storage materials
• New thermal and structural materials
• Soft materials
• Biomaterials and related topics
• Nanoscale science and technology
• Advances in materials characterization methods and techniques
• Computational materials science, modeling and theory