光学相机通信系统设计指南:教程

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Photonics Journal Pub Date : 2024-07-09 DOI:10.1109/JPHOT.2024.3424885
Anqi Liu;Wenxiao Shi;Majid Safari;Wei Liu;Jingtai Cao
{"title":"光学相机通信系统设计指南:教程","authors":"Anqi Liu;Wenxiao Shi;Majid Safari;Wei Liu;Jingtai Cao","doi":"10.1109/JPHOT.2024.3424885","DOIUrl":null,"url":null,"abstract":"The rapid development of the Internet of Things (IoT) has put great challenges on the next generation's communication technologies. Optical Camera Communication (OCC), with its advantages of the green principle, less electromagnetic interference, and harmonious integrations, can serve as a complementary, and sometimes viable alternative technology to mainstream Radio Frequency (RF)-based one. Designing efficient OCC platforms crucially involves accurate modeling of the OCC system and evaluating the efficiency of OCC-based techniques, which then stimulates related practical applications. This paper aims to provide a systematic perspective to understand OCC and to present design guidelines for OCC systems from theory to practice. First, the main parameters and analytical models for OCC basic components are presented to provide guidance on hardware parameter selection and system simulations. Next, typical implementation procedures and common performance evaluation criteria for an overall OCC system are provided. Then, detailed goal-oriented OCC enhancement solutions are summarized aiming to provide systematic guidelines for system performance enhancement. Finally, OCC designed examples are presented based on the results of our OCC experimental platform and some future research directions are discussed.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 4","pages":"1-25"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10590729","citationCount":"0","resultStr":"{\"title\":\"Design Guidelines for Optical Camera Communication Systems: A Tutorial\",\"authors\":\"Anqi Liu;Wenxiao Shi;Majid Safari;Wei Liu;Jingtai Cao\",\"doi\":\"10.1109/JPHOT.2024.3424885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid development of the Internet of Things (IoT) has put great challenges on the next generation's communication technologies. Optical Camera Communication (OCC), with its advantages of the green principle, less electromagnetic interference, and harmonious integrations, can serve as a complementary, and sometimes viable alternative technology to mainstream Radio Frequency (RF)-based one. Designing efficient OCC platforms crucially involves accurate modeling of the OCC system and evaluating the efficiency of OCC-based techniques, which then stimulates related practical applications. This paper aims to provide a systematic perspective to understand OCC and to present design guidelines for OCC systems from theory to practice. First, the main parameters and analytical models for OCC basic components are presented to provide guidance on hardware parameter selection and system simulations. Next, typical implementation procedures and common performance evaluation criteria for an overall OCC system are provided. Then, detailed goal-oriented OCC enhancement solutions are summarized aiming to provide systematic guidelines for system performance enhancement. Finally, OCC designed examples are presented based on the results of our OCC experimental platform and some future research directions are discussed.\",\"PeriodicalId\":13204,\"journal\":{\"name\":\"IEEE Photonics Journal\",\"volume\":\"16 4\",\"pages\":\"1-25\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10590729\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10590729/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10590729/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

物联网(IoT)的快速发展对下一代通信技术提出了巨大挑战。光摄像通信(OCC)具有绿色环保、电磁干扰少、集成度高的优点,可以作为主流射频(RF)技术的补充,有时甚至是可行的替代技术。设计高效的 OCC 平台,关键在于对 OCC 系统进行精确建模,评估基于 OCC 技术的效率,进而促进相关的实际应用。本文旨在提供一个系统的视角来理解 OCC,并从理论到实践提出 OCC 系统的设计指南。首先,介绍 OCC 基本组件的主要参数和分析模型,为硬件参数选择和系统仿真提供指导。接着,介绍了整个 OCC 系统的典型实施程序和通用性能评估标准。然后,总结了详细的以目标为导向的 OCC 增强解决方案,旨在为系统性能增强提供系统指导。最后,根据我们的 OCC 实验平台的结果介绍了 OCC 设计实例,并讨论了一些未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design Guidelines for Optical Camera Communication Systems: A Tutorial
The rapid development of the Internet of Things (IoT) has put great challenges on the next generation's communication technologies. Optical Camera Communication (OCC), with its advantages of the green principle, less electromagnetic interference, and harmonious integrations, can serve as a complementary, and sometimes viable alternative technology to mainstream Radio Frequency (RF)-based one. Designing efficient OCC platforms crucially involves accurate modeling of the OCC system and evaluating the efficiency of OCC-based techniques, which then stimulates related practical applications. This paper aims to provide a systematic perspective to understand OCC and to present design guidelines for OCC systems from theory to practice. First, the main parameters and analytical models for OCC basic components are presented to provide guidance on hardware parameter selection and system simulations. Next, typical implementation procedures and common performance evaluation criteria for an overall OCC system are provided. Then, detailed goal-oriented OCC enhancement solutions are summarized aiming to provide systematic guidelines for system performance enhancement. Finally, OCC designed examples are presented based on the results of our OCC experimental platform and some future research directions are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Photonics Journal
IEEE Photonics Journal ENGINEERING, ELECTRICAL & ELECTRONIC-OPTICS
CiteScore
4.50
自引率
8.30%
发文量
489
审稿时长
1.4 months
期刊介绍: Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.
期刊最新文献
FSPI-R&D: Joint Reconstruction and Detection to Enhance the Object Detection Precision of Fourier Single-Pixel Imaging Integrated Physical Layer Key Distribution by Optical Steganography in Quantum Noise Stream Cipher System Defect Density-Dependent Dynamics of Double Absorber Layered Perovskite Solar Cell Spectral Optimization of the Three-Primary Laser-Based Displays With Large Circadian Action Factor Based on Age of User Optical and Visual Performance of PWM Controlled InGaN and InGaAlP LEDs for Automotive Lighting Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1