填充焊丝交流 GTAW 焊接熔珠的特征和晶粒细化

IF 2.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Welding in the World Pub Date : 2024-07-09 DOI:10.1007/s40194-024-01807-4
Xueping Song, Jia Zhang, Xiaoquan Yu, Huayu Zhao, Jianzhou Xu, Jian Liu, Jiankang Huang, Ding Fan
{"title":"填充焊丝交流 GTAW 焊接熔珠的特征和晶粒细化","authors":"Xueping Song,&nbsp;Jia Zhang,&nbsp;Xiaoquan Yu,&nbsp;Huayu Zhao,&nbsp;Jianzhou Xu,&nbsp;Jian Liu,&nbsp;Jiankang Huang,&nbsp;Ding Fan","doi":"10.1007/s40194-024-01807-4","DOIUrl":null,"url":null,"abstract":"<div><p>To control the formation and grain structural characteristics in the welding process, an alternating current (AC)-assisted double-wire feeding strategy was applied to a traditional gas tungsten arc welding (GTAW) process. During this process, two filler wires were connected to AC power and fed to the molten pool in a nonplanar and symmetric manner from one side. The influences of the AC, AC frequency, and arc current on various parameters, including the molten droplet size, droplet transition frequency, and deposited bead formation, were evaluated. The research revealed that this method could be implemented to effectively achieve a well-formed weld bead, especially at high ACs. Microstructural analysis indicated that the grain size decreased with increasing AC frequency. Finally, the underlying mechanism of grain refinement resulting from the addition of AC to the double filler wire was discussed.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characteristics and grain refinement of the weld bead by the GTAW with the alternating current on the filling wires\",\"authors\":\"Xueping Song,&nbsp;Jia Zhang,&nbsp;Xiaoquan Yu,&nbsp;Huayu Zhao,&nbsp;Jianzhou Xu,&nbsp;Jian Liu,&nbsp;Jiankang Huang,&nbsp;Ding Fan\",\"doi\":\"10.1007/s40194-024-01807-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To control the formation and grain structural characteristics in the welding process, an alternating current (AC)-assisted double-wire feeding strategy was applied to a traditional gas tungsten arc welding (GTAW) process. During this process, two filler wires were connected to AC power and fed to the molten pool in a nonplanar and symmetric manner from one side. The influences of the AC, AC frequency, and arc current on various parameters, including the molten droplet size, droplet transition frequency, and deposited bead formation, were evaluated. The research revealed that this method could be implemented to effectively achieve a well-formed weld bead, especially at high ACs. Microstructural analysis indicated that the grain size decreased with increasing AC frequency. Finally, the underlying mechanism of grain refinement resulting from the addition of AC to the double filler wire was discussed.</p></div>\",\"PeriodicalId\":809,\"journal\":{\"name\":\"Welding in the World\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Welding in the World\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40194-024-01807-4\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding in the World","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40194-024-01807-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

为了控制焊接过程中的成形和晶粒结构特征,在传统的气体钨极氩弧焊(GTAW)过程中采用了交流电(AC)辅助双焊丝进给策略。在此过程中,两根焊丝与交流电源相连,以非平面对称的方式从一侧送入熔池。研究评估了交流电、交流电频率和电弧电流对各种参数的影响,包括熔滴尺寸、熔滴转换频率和沉积珠的形成。研究表明,采用这种方法可以有效地获得成形良好的焊缝,尤其是在高交流电压下。微观结构分析表明,晶粒尺寸随着交流频率的增加而减小。最后,还讨论了在双填充焊丝中添加交流电导致晶粒细化的基本机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characteristics and grain refinement of the weld bead by the GTAW with the alternating current on the filling wires

To control the formation and grain structural characteristics in the welding process, an alternating current (AC)-assisted double-wire feeding strategy was applied to a traditional gas tungsten arc welding (GTAW) process. During this process, two filler wires were connected to AC power and fed to the molten pool in a nonplanar and symmetric manner from one side. The influences of the AC, AC frequency, and arc current on various parameters, including the molten droplet size, droplet transition frequency, and deposited bead formation, were evaluated. The research revealed that this method could be implemented to effectively achieve a well-formed weld bead, especially at high ACs. Microstructural analysis indicated that the grain size decreased with increasing AC frequency. Finally, the underlying mechanism of grain refinement resulting from the addition of AC to the double filler wire was discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Welding in the World
Welding in the World METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
4.20
自引率
14.30%
发文量
181
审稿时长
6-12 weeks
期刊介绍: The journal Welding in the World publishes authoritative papers on every aspect of materials joining, including welding, brazing, soldering, cutting, thermal spraying and allied joining and fabrication techniques.
期刊最新文献
Effect of holding time on microstructure evolution and properties of T2Cu/Al1060 diffusion bonding layer Monitoring the gas metal arc additive manufacturing process using unsupervised machine learning Linear and cylindrical friction stir additive manufacturing (FSAM) of AA6061-T6 by consumable rods: metallurgical structure, wear, and corrosion properties Determination of the load acting on the probe by separating force and torque during FSW of AA 6060 T66 Microstructural evolution during low-temperature TLP bonding of WC-6Co cemented carbide to AISI 1045 steel using multi-layer of Ni/Cu/In/Cu/Ni
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1