{"title":"RESP:智能电网系统级联故障的早期实时预测机制","authors":"Ali Salehpour;Irfan Al-Anbagi","doi":"10.1109/JSYST.2024.3420950","DOIUrl":null,"url":null,"abstract":"Cascading failures resulting from cyberattacks are one of the main concerns in smart grid systems. The use of machine learning (ML) algorithms has become more relevant in identifying and forecasting such cascading failures. In this article, we develop a real-time early stage mechanism (RESP) to predict cascading failures due to cyberattacks in smart grid systems using supervised ML algorithms. We use a realistic methodology to create a dataset to train the algorithms and predict the state of all components of the system after failure propagation. We utilize the extreme gradient boosting (XGBoost) algorithm and consider the features of both the power and communication networks to improve the failure prediction accuracy. We use the real-time digital simulator (RTDS) to simulate the power system and make the system more applicable. We evaluate the mechanism's effectiveness using the IEEE 14-bus system, which results in the XGBoost algorithm achieving a 96.25% prediction accuracy rate in random attacks. We show that RESP can accurately predict the state of a power system in the early stages of failure propagation using real-time data. Furthermore, we show that RESP can identify the initial failure locations, which can aid in further protection plans and decisions.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 3","pages":"1593-1604"},"PeriodicalIF":4.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RESP: A Real-Time Early Stage Prediction Mechanism for Cascading Failures in Smart Grid Systems\",\"authors\":\"Ali Salehpour;Irfan Al-Anbagi\",\"doi\":\"10.1109/JSYST.2024.3420950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cascading failures resulting from cyberattacks are one of the main concerns in smart grid systems. The use of machine learning (ML) algorithms has become more relevant in identifying and forecasting such cascading failures. In this article, we develop a real-time early stage mechanism (RESP) to predict cascading failures due to cyberattacks in smart grid systems using supervised ML algorithms. We use a realistic methodology to create a dataset to train the algorithms and predict the state of all components of the system after failure propagation. We utilize the extreme gradient boosting (XGBoost) algorithm and consider the features of both the power and communication networks to improve the failure prediction accuracy. We use the real-time digital simulator (RTDS) to simulate the power system and make the system more applicable. We evaluate the mechanism's effectiveness using the IEEE 14-bus system, which results in the XGBoost algorithm achieving a 96.25% prediction accuracy rate in random attacks. We show that RESP can accurately predict the state of a power system in the early stages of failure propagation using real-time data. Furthermore, we show that RESP can identify the initial failure locations, which can aid in further protection plans and decisions.\",\"PeriodicalId\":55017,\"journal\":{\"name\":\"IEEE Systems Journal\",\"volume\":\"18 3\",\"pages\":\"1593-1604\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Systems Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10589285/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10589285/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
RESP: A Real-Time Early Stage Prediction Mechanism for Cascading Failures in Smart Grid Systems
Cascading failures resulting from cyberattacks are one of the main concerns in smart grid systems. The use of machine learning (ML) algorithms has become more relevant in identifying and forecasting such cascading failures. In this article, we develop a real-time early stage mechanism (RESP) to predict cascading failures due to cyberattacks in smart grid systems using supervised ML algorithms. We use a realistic methodology to create a dataset to train the algorithms and predict the state of all components of the system after failure propagation. We utilize the extreme gradient boosting (XGBoost) algorithm and consider the features of both the power and communication networks to improve the failure prediction accuracy. We use the real-time digital simulator (RTDS) to simulate the power system and make the system more applicable. We evaluate the mechanism's effectiveness using the IEEE 14-bus system, which results in the XGBoost algorithm achieving a 96.25% prediction accuracy rate in random attacks. We show that RESP can accurately predict the state of a power system in the early stages of failure propagation using real-time data. Furthermore, we show that RESP can identify the initial failure locations, which can aid in further protection plans and decisions.
期刊介绍:
This publication provides a systems-level, focused forum for application-oriented manuscripts that address complex systems and system-of-systems of national and global significance. It intends to encourage and facilitate cooperation and interaction among IEEE Societies with systems-level and systems engineering interest, and to attract non-IEEE contributors and readers from around the globe. Our IEEE Systems Council job is to address issues in new ways that are not solvable in the domains of the existing IEEE or other societies or global organizations. These problems do not fit within traditional hierarchical boundaries. For example, disaster response such as that triggered by Hurricane Katrina, tsunamis, or current volcanic eruptions is not solvable by pure engineering solutions. We need to think about changing and enlarging the paradigm to include systems issues.