{"title":"评估和预测地表温度对阿尔及利亚奥兰市人类热舒适度的影响","authors":"Abdelhalim Bendib, Mohamed Lamine Boutrid","doi":"10.1007/s00704-024-05097-0","DOIUrl":null,"url":null,"abstract":"<p>Urban expansion has made thermal conditions a significant concern in the city of Oran. The daily dynamics of transportation and industrial activities can result in high temperatures, which can cause stress for residents, particularly during the summer. In this study, Landsat 8 data were used to extract Land Surface Temperature (LST) for July 18, 2015, and July 15, 2020. Anthropogenic, microclimatic, and atmospheric pollutant variables and a Random Forest (RF) model were employed to predict temperatures for 2025. The results revealed that 26% of the study area is characterized by low temperatures that do not exceed 33 °C; this area consists mainly of forests and water surfaces. 25% exhibit extreme temperatures exceeding 42 °C, with the industrial zone and port of Oran being the main heat sources. Additionally, with 48% of the study area, built-up areas and bare land are characterized by mean temperatures ranging between 33.87 °C and 42.28 °C. With a mean temperature of 37.27 °C, the simulation for 2025 shows that temperatures are expected to decrease by 0.53 °C, with forests and water surfaces being the main classes. Our findings provide valuable information on the future thermal balance of cities and can assist planners in designing more effective medium and long-term policies from both environmental and tourism perspectives.</p>","PeriodicalId":22945,"journal":{"name":"Theoretical and Applied Climatology","volume":"90 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment and prediction of land surface temperature effects on human thermal comfort in the city of Oran, Algeria\",\"authors\":\"Abdelhalim Bendib, Mohamed Lamine Boutrid\",\"doi\":\"10.1007/s00704-024-05097-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Urban expansion has made thermal conditions a significant concern in the city of Oran. The daily dynamics of transportation and industrial activities can result in high temperatures, which can cause stress for residents, particularly during the summer. In this study, Landsat 8 data were used to extract Land Surface Temperature (LST) for July 18, 2015, and July 15, 2020. Anthropogenic, microclimatic, and atmospheric pollutant variables and a Random Forest (RF) model were employed to predict temperatures for 2025. The results revealed that 26% of the study area is characterized by low temperatures that do not exceed 33 °C; this area consists mainly of forests and water surfaces. 25% exhibit extreme temperatures exceeding 42 °C, with the industrial zone and port of Oran being the main heat sources. Additionally, with 48% of the study area, built-up areas and bare land are characterized by mean temperatures ranging between 33.87 °C and 42.28 °C. With a mean temperature of 37.27 °C, the simulation for 2025 shows that temperatures are expected to decrease by 0.53 °C, with forests and water surfaces being the main classes. Our findings provide valuable information on the future thermal balance of cities and can assist planners in designing more effective medium and long-term policies from both environmental and tourism perspectives.</p>\",\"PeriodicalId\":22945,\"journal\":{\"name\":\"Theoretical and Applied Climatology\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Climatology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00704-024-05097-0\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Climatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00704-024-05097-0","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Assessment and prediction of land surface temperature effects on human thermal comfort in the city of Oran, Algeria
Urban expansion has made thermal conditions a significant concern in the city of Oran. The daily dynamics of transportation and industrial activities can result in high temperatures, which can cause stress for residents, particularly during the summer. In this study, Landsat 8 data were used to extract Land Surface Temperature (LST) for July 18, 2015, and July 15, 2020. Anthropogenic, microclimatic, and atmospheric pollutant variables and a Random Forest (RF) model were employed to predict temperatures for 2025. The results revealed that 26% of the study area is characterized by low temperatures that do not exceed 33 °C; this area consists mainly of forests and water surfaces. 25% exhibit extreme temperatures exceeding 42 °C, with the industrial zone and port of Oran being the main heat sources. Additionally, with 48% of the study area, built-up areas and bare land are characterized by mean temperatures ranging between 33.87 °C and 42.28 °C. With a mean temperature of 37.27 °C, the simulation for 2025 shows that temperatures are expected to decrease by 0.53 °C, with forests and water surfaces being the main classes. Our findings provide valuable information on the future thermal balance of cities and can assist planners in designing more effective medium and long-term policies from both environmental and tourism perspectives.
期刊介绍:
Theoretical and Applied Climatology covers the following topics:
- climate modeling, climatic changes and climate forecasting, micro- to mesoclimate, applied meteorology as in agro- and forestmeteorology, biometeorology, building meteorology and atmospheric radiation problems as they relate to the biosphere
- effects of anthropogenic and natural aerosols or gaseous trace constituents
- hardware and software elements of meteorological measurements, including techniques of remote sensing