{"title":"分送车辆路由问题的精确方法和启发式方法","authors":"Mette Gamst, Richard Martin Lusby, Stefan Ropke","doi":"10.1287/trsc.2022.0353","DOIUrl":null,"url":null,"abstract":"This paper describes an exact branch-and-cut (B&C) algorithm for the split delivery vehicle routing problem. The underlying model is based on a previously proposed two-index vehicle flow formulation that models a relaxation of the problem. We dynamically separate two well-known classes of valid inequalities, namely capacity and connectivity cuts, and use an in-out algorithm to improve the convergence of the cutting phase. We generate no-good cuts from feasible integer solutions to the relaxation using a recently proposed single-commodity flow formulation in the literature. The exact methodology is complemented by a very effective adaptive large neighborhood search (ALNS) heuristic that provides high-quality upper bounds to initiate the B&C algorithm. Key ingredients in the design of the heuristic include the use of a tailored construction algorithm, which can exploit the situation in which the ratio of the number of customers to the minimum number of vehicles needed is low, and the use of a route-based formulation to improve the solutions found before, during, and after the ALNS procedure. An earlier version of this work was submitted to the DIMACS (Center for Discrete Mathematics and Theoretical Computer Science) implementation challenge, where it placed third. On sets of well-known benchmark instances for limited and unlimited fleet variants of the problem, we demonstrate that the heuristic provides very competitive solutions, with respective average gaps of 0.19% and 0.18% from best-known values. Furthermore, the exact B&C framework is also highly competitive with state-of-the-art methods, providing solutions with an average optimality gap of 1.82%.History: This paper has been accepted for the Transportation Science Special Section on DIMACS Implementation Challenge: Vehicle Routing Problems.Supplemental Material: The online appendices are available at https://doi.org/10.1287/trsc.2022.0353 .","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":"145 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact and Heuristic Methods for the Split Delivery Vehicle Routing Problem\",\"authors\":\"Mette Gamst, Richard Martin Lusby, Stefan Ropke\",\"doi\":\"10.1287/trsc.2022.0353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an exact branch-and-cut (B&C) algorithm for the split delivery vehicle routing problem. The underlying model is based on a previously proposed two-index vehicle flow formulation that models a relaxation of the problem. We dynamically separate two well-known classes of valid inequalities, namely capacity and connectivity cuts, and use an in-out algorithm to improve the convergence of the cutting phase. We generate no-good cuts from feasible integer solutions to the relaxation using a recently proposed single-commodity flow formulation in the literature. The exact methodology is complemented by a very effective adaptive large neighborhood search (ALNS) heuristic that provides high-quality upper bounds to initiate the B&C algorithm. Key ingredients in the design of the heuristic include the use of a tailored construction algorithm, which can exploit the situation in which the ratio of the number of customers to the minimum number of vehicles needed is low, and the use of a route-based formulation to improve the solutions found before, during, and after the ALNS procedure. An earlier version of this work was submitted to the DIMACS (Center for Discrete Mathematics and Theoretical Computer Science) implementation challenge, where it placed third. On sets of well-known benchmark instances for limited and unlimited fleet variants of the problem, we demonstrate that the heuristic provides very competitive solutions, with respective average gaps of 0.19% and 0.18% from best-known values. Furthermore, the exact B&C framework is also highly competitive with state-of-the-art methods, providing solutions with an average optimality gap of 1.82%.History: This paper has been accepted for the Transportation Science Special Section on DIMACS Implementation Challenge: Vehicle Routing Problems.Supplemental Material: The online appendices are available at https://doi.org/10.1287/trsc.2022.0353 .\",\"PeriodicalId\":51202,\"journal\":{\"name\":\"Transportation Science\",\"volume\":\"145 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1287/trsc.2022.0353\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1287/trsc.2022.0353","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Exact and Heuristic Methods for the Split Delivery Vehicle Routing Problem
This paper describes an exact branch-and-cut (B&C) algorithm for the split delivery vehicle routing problem. The underlying model is based on a previously proposed two-index vehicle flow formulation that models a relaxation of the problem. We dynamically separate two well-known classes of valid inequalities, namely capacity and connectivity cuts, and use an in-out algorithm to improve the convergence of the cutting phase. We generate no-good cuts from feasible integer solutions to the relaxation using a recently proposed single-commodity flow formulation in the literature. The exact methodology is complemented by a very effective adaptive large neighborhood search (ALNS) heuristic that provides high-quality upper bounds to initiate the B&C algorithm. Key ingredients in the design of the heuristic include the use of a tailored construction algorithm, which can exploit the situation in which the ratio of the number of customers to the minimum number of vehicles needed is low, and the use of a route-based formulation to improve the solutions found before, during, and after the ALNS procedure. An earlier version of this work was submitted to the DIMACS (Center for Discrete Mathematics and Theoretical Computer Science) implementation challenge, where it placed third. On sets of well-known benchmark instances for limited and unlimited fleet variants of the problem, we demonstrate that the heuristic provides very competitive solutions, with respective average gaps of 0.19% and 0.18% from best-known values. Furthermore, the exact B&C framework is also highly competitive with state-of-the-art methods, providing solutions with an average optimality gap of 1.82%.History: This paper has been accepted for the Transportation Science Special Section on DIMACS Implementation Challenge: Vehicle Routing Problems.Supplemental Material: The online appendices are available at https://doi.org/10.1287/trsc.2022.0353 .
期刊介绍:
Transportation Science, published quarterly by INFORMS, is the flagship journal of the Transportation Science and Logistics Society of INFORMS. As the foremost scientific journal in the cross-disciplinary operational research field of transportation analysis, Transportation Science publishes high-quality original contributions and surveys on phenomena associated with all modes of transportation, present and prospective, including mainly all levels of planning, design, economic, operational, and social aspects. Transportation Science focuses primarily on fundamental theories, coupled with observational and experimental studies of transportation and logistics phenomena and processes, mathematical models, advanced methodologies and novel applications in transportation and logistics systems analysis, planning and design. The journal covers a broad range of topics that include vehicular and human traffic flow theories, models and their application to traffic operations and management, strategic, tactical, and operational planning of transportation and logistics systems; performance analysis methods and system design and optimization; theories and analysis methods for network and spatial activity interaction, equilibrium and dynamics; economics of transportation system supply and evaluation; methodologies for analysis of transportation user behavior and the demand for transportation and logistics services.
Transportation Science is international in scope, with editors from nations around the globe. The editorial board reflects the diverse interdisciplinary interests of the transportation science and logistics community, with members that hold primary affiliations in engineering (civil, industrial, and aeronautical), physics, economics, applied mathematics, and business.