{"title":"(3+1)-D势Yu-Toda-Sasa-Fukuyama方程的可积分性、相似性还原和新类精确解","authors":"Ahmed A. Gaber, Ahmet Bekir","doi":"10.1007/s12346-024-01090-0","DOIUrl":null,"url":null,"abstract":"<p>In this investigation, the (3+1)-D potential Yu–Toda–Sasa–Fukuyama (YTSF) equation that arises in physical dynamics is studied for passing the painlevé test and obtaining many various exact solutions. The governing equation has many applications in fluid mechanics. Firstly, we applied the painlevé property for the governing equation and proved that the equation passes the painlevé test. After that, we utilized symmetry analysis to convert the governing equation to various ordinary differential equations. Subsequently, we obtained a new type of exact solutions for YTSF equation by using an Algorithm–Riccati method. The obtained solutions contained several arbitrary constants and functions that enhance the dynamic behaviors of these solutions. The obtained solutions include hyperbolic and trigonometric functions and represent kink wave, singularity wave and solitary wave solutions.\n</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"35 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrability, Similarity Reductions and New Classes of Exact Solutions for (3+1)-D Potential Yu–Toda–Sasa–Fukuyama Equation\",\"authors\":\"Ahmed A. Gaber, Ahmet Bekir\",\"doi\":\"10.1007/s12346-024-01090-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this investigation, the (3+1)-D potential Yu–Toda–Sasa–Fukuyama (YTSF) equation that arises in physical dynamics is studied for passing the painlevé test and obtaining many various exact solutions. The governing equation has many applications in fluid mechanics. Firstly, we applied the painlevé property for the governing equation and proved that the equation passes the painlevé test. After that, we utilized symmetry analysis to convert the governing equation to various ordinary differential equations. Subsequently, we obtained a new type of exact solutions for YTSF equation by using an Algorithm–Riccati method. The obtained solutions contained several arbitrary constants and functions that enhance the dynamic behaviors of these solutions. The obtained solutions include hyperbolic and trigonometric functions and represent kink wave, singularity wave and solitary wave solutions.\\n</p>\",\"PeriodicalId\":48886,\"journal\":{\"name\":\"Qualitative Theory of Dynamical Systems\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Qualitative Theory of Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12346-024-01090-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01090-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Integrability, Similarity Reductions and New Classes of Exact Solutions for (3+1)-D Potential Yu–Toda–Sasa–Fukuyama Equation
In this investigation, the (3+1)-D potential Yu–Toda–Sasa–Fukuyama (YTSF) equation that arises in physical dynamics is studied for passing the painlevé test and obtaining many various exact solutions. The governing equation has many applications in fluid mechanics. Firstly, we applied the painlevé property for the governing equation and proved that the equation passes the painlevé test. After that, we utilized symmetry analysis to convert the governing equation to various ordinary differential equations. Subsequently, we obtained a new type of exact solutions for YTSF equation by using an Algorithm–Riccati method. The obtained solutions contained several arbitrary constants and functions that enhance the dynamic behaviors of these solutions. The obtained solutions include hyperbolic and trigonometric functions and represent kink wave, singularity wave and solitary wave solutions.
期刊介绍:
Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.