Süleyman Muhammed Arıkan, Aynur Koçak, Mustafa Alkan
{"title":"针对封闭源代码软件漏洞自动生成可共享的网络威胁情报:基于深度学习的检测系统","authors":"Süleyman Muhammed Arıkan, Aynur Koçak, Mustafa Alkan","doi":"10.1007/s10207-024-00882-4","DOIUrl":null,"url":null,"abstract":"<p>Software can be vulnerable to various types of interference. The production of cyber threat intelligence for closed source software requires significant effort, experience, and many manual steps. The objective of this study is to automate the process of producing cyber threat intelligence, focusing on closed source software vulnerabilities. To achieve our goal, we have developed a system called cti-for-css. Deep learning algorithms were used for detection. To simplify data representation and reduce pre-processing workload, the study proposes the function-as-sentence approach. The MLP, OneDNN, LSTM, and Bi-LSTM algorithms were trained using this approach with the SOSP and NDSS18 binary datasets, and their results were compared. The aforementioned datasets contain buffer error vulnerabilities (CWE-119) and resource management error vulnerabilities (CWE-399). Our results are as successful as the studies in the literature. The system achieved the best performance using Bi-LSTM, with F1 score of 82.4%. Additionally, AUC score of 93.0% was acquired, which is the best in the literature. The study concluded by producing cyber threat intelligence using closed source software. Shareable intelligence was produced in an average of 0.1 s, excluding the detection process. Each record, which was represented using our approach, was classified in under 0.32 s on average.</p>","PeriodicalId":50316,"journal":{"name":"International Journal of Information Security","volume":"19 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automating shareable cyber threat intelligence production for closed source software vulnerabilities: a deep learning based detection system\",\"authors\":\"Süleyman Muhammed Arıkan, Aynur Koçak, Mustafa Alkan\",\"doi\":\"10.1007/s10207-024-00882-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Software can be vulnerable to various types of interference. The production of cyber threat intelligence for closed source software requires significant effort, experience, and many manual steps. The objective of this study is to automate the process of producing cyber threat intelligence, focusing on closed source software vulnerabilities. To achieve our goal, we have developed a system called cti-for-css. Deep learning algorithms were used for detection. To simplify data representation and reduce pre-processing workload, the study proposes the function-as-sentence approach. The MLP, OneDNN, LSTM, and Bi-LSTM algorithms were trained using this approach with the SOSP and NDSS18 binary datasets, and their results were compared. The aforementioned datasets contain buffer error vulnerabilities (CWE-119) and resource management error vulnerabilities (CWE-399). Our results are as successful as the studies in the literature. The system achieved the best performance using Bi-LSTM, with F1 score of 82.4%. Additionally, AUC score of 93.0% was acquired, which is the best in the literature. The study concluded by producing cyber threat intelligence using closed source software. Shareable intelligence was produced in an average of 0.1 s, excluding the detection process. Each record, which was represented using our approach, was classified in under 0.32 s on average.</p>\",\"PeriodicalId\":50316,\"journal\":{\"name\":\"International Journal of Information Security\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10207-024-00882-4\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Security","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10207-024-00882-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Automating shareable cyber threat intelligence production for closed source software vulnerabilities: a deep learning based detection system
Software can be vulnerable to various types of interference. The production of cyber threat intelligence for closed source software requires significant effort, experience, and many manual steps. The objective of this study is to automate the process of producing cyber threat intelligence, focusing on closed source software vulnerabilities. To achieve our goal, we have developed a system called cti-for-css. Deep learning algorithms were used for detection. To simplify data representation and reduce pre-processing workload, the study proposes the function-as-sentence approach. The MLP, OneDNN, LSTM, and Bi-LSTM algorithms were trained using this approach with the SOSP and NDSS18 binary datasets, and their results were compared. The aforementioned datasets contain buffer error vulnerabilities (CWE-119) and resource management error vulnerabilities (CWE-399). Our results are as successful as the studies in the literature. The system achieved the best performance using Bi-LSTM, with F1 score of 82.4%. Additionally, AUC score of 93.0% was acquired, which is the best in the literature. The study concluded by producing cyber threat intelligence using closed source software. Shareable intelligence was produced in an average of 0.1 s, excluding the detection process. Each record, which was represented using our approach, was classified in under 0.32 s on average.
期刊介绍:
The International Journal of Information Security is an English language periodical on research in information security which offers prompt publication of important technical work, whether theoretical, applicable, or related to implementation.
Coverage includes system security: intrusion detection, secure end systems, secure operating systems, database security, security infrastructures, security evaluation; network security: Internet security, firewalls, mobile security, security agents, protocols, anti-virus and anti-hacker measures; content protection: watermarking, software protection, tamper resistant software; applications: electronic commerce, government, health, telecommunications, mobility.