Frontiers | 低渗透油藏的低温氧化分析评价和高压空气注入的开发效果

IF 2 3区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Frontiers in Earth Science Pub Date : 2024-06-13 DOI:10.3389/feart.2024.1416824
Xinyu Chen, Zhongchen Ba, Zhiyuan Lu, Yuhui Gao, Yang Zhou, Xinrui Li
{"title":"Frontiers | 低渗透油藏的低温氧化分析评价和高压空气注入的开发效果","authors":"Xinyu Chen, Zhongchen Ba, Zhiyuan Lu, Yuhui Gao, Yang Zhou, Xinrui Li","doi":"10.3389/feart.2024.1416824","DOIUrl":null,"url":null,"abstract":"In order to solve the problems of conventional water injection development difficulties and low recovery factor in low-permeability reservoirs, the method of high-pressure air drive is adopted to achieve the purpose of reservoir energy enhancement and efficiency improvement. This paper conducted an experimental study on the mechanism of low-temperature oxidation (LTO) for crude oil in the process of high-pressure air flooding, elaborated the relationship between the LTO properties of crude oil and the temperature, pressure, and water saturation of the reservoir, and analyzed the differences in LTO oxygen consumption and oil components under different reaction conditions. In addition, combined with the air flooding physical simulation experiment, the dynamic evolution law of recovery rate in the air flooding process was revealed. Findings from this inquiry indicate that an escalation in the oxidation temperature significantly amplifies the oxygen incorporation reaction within the crude oil matrix. This augmentation in oxidative conditions leads to an uptick in oxygen consumption, which subsequently precipitates a reduction in the lighter fractions of the oxidized oil while enriching its heavier components. Elevated pressures were found to enhance the propensity for the amalgamation of unstable hydrocarbons with oxygen, fostering comprehensive and heterogeneous oxidation reactions. Notably, an excessive presence of water was observed to detrimentally affect the thermal efficacy of crude oil oxidation processes. In the context of low-permeability reservoirs, air injection techniques have emerged as superior in effectuating oil displacement, although an increase in injection pressures has been associated with the phenomenon of gas channeling. Interestingly, adopting a sequential strategy of initiating water flooding before air flooding facilitated the conveyance of high-pressure air via established flushing channels, although it appeared to attenuate the intensity of crude oil oxidation, culminating in an oil recovery efficiency peaking at 51%.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frontiers | Evaluation of low-temperature oxidation analysis and the development effect of high-pressure air injection in low-permeability reservoirs\",\"authors\":\"Xinyu Chen, Zhongchen Ba, Zhiyuan Lu, Yuhui Gao, Yang Zhou, Xinrui Li\",\"doi\":\"10.3389/feart.2024.1416824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to solve the problems of conventional water injection development difficulties and low recovery factor in low-permeability reservoirs, the method of high-pressure air drive is adopted to achieve the purpose of reservoir energy enhancement and efficiency improvement. This paper conducted an experimental study on the mechanism of low-temperature oxidation (LTO) for crude oil in the process of high-pressure air flooding, elaborated the relationship between the LTO properties of crude oil and the temperature, pressure, and water saturation of the reservoir, and analyzed the differences in LTO oxygen consumption and oil components under different reaction conditions. In addition, combined with the air flooding physical simulation experiment, the dynamic evolution law of recovery rate in the air flooding process was revealed. Findings from this inquiry indicate that an escalation in the oxidation temperature significantly amplifies the oxygen incorporation reaction within the crude oil matrix. This augmentation in oxidative conditions leads to an uptick in oxygen consumption, which subsequently precipitates a reduction in the lighter fractions of the oxidized oil while enriching its heavier components. Elevated pressures were found to enhance the propensity for the amalgamation of unstable hydrocarbons with oxygen, fostering comprehensive and heterogeneous oxidation reactions. Notably, an excessive presence of water was observed to detrimentally affect the thermal efficacy of crude oil oxidation processes. In the context of low-permeability reservoirs, air injection techniques have emerged as superior in effectuating oil displacement, although an increase in injection pressures has been associated with the phenomenon of gas channeling. Interestingly, adopting a sequential strategy of initiating water flooding before air flooding facilitated the conveyance of high-pressure air via established flushing channels, although it appeared to attenuate the intensity of crude oil oxidation, culminating in an oil recovery efficiency peaking at 51%.\",\"PeriodicalId\":12359,\"journal\":{\"name\":\"Frontiers in Earth Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Earth Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3389/feart.2024.1416824\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3389/feart.2024.1416824","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为解决低渗透油藏常规注水开发难度大、采收率低等问题,采用高压气驱的方法达到油藏增能提效的目的。本文对高压气淹过程中原油低温氧化(LTO)机理进行了试验研究,阐述了原油低温氧化特性与油藏温度、压力、含水饱和度之间的关系,分析了不同反应条件下原油低温氧化耗氧量和油品组分的差异。此外,结合气淹物理模拟实验,揭示了气淹过程中采收率的动态演化规律。研究结果表明,氧化温度的升高会显著放大原油基质中的氧气掺入反应。氧化条件的增强会导致氧气消耗量的增加,从而使氧化油中的轻质成分减少,而重质成分增加。研究发现,压力升高会增强不稳定碳氢化合物与氧气混合的倾向,促进全面的异质氧化反应。值得注意的是,水的过量存在会对原油氧化过程的热效率产生不利影响。在低渗透油藏中,空气注入技术在实现石油置换方面具有优势,尽管注入压力的增加与气体通道现象有关。有趣的是,采用先注水后注气的顺序策略,有利于通过已建立的冲洗通道输送高压空气,但这似乎会减弱原油氧化的强度,最终使石油采收率达到 51% 的峰值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Frontiers | Evaluation of low-temperature oxidation analysis and the development effect of high-pressure air injection in low-permeability reservoirs
In order to solve the problems of conventional water injection development difficulties and low recovery factor in low-permeability reservoirs, the method of high-pressure air drive is adopted to achieve the purpose of reservoir energy enhancement and efficiency improvement. This paper conducted an experimental study on the mechanism of low-temperature oxidation (LTO) for crude oil in the process of high-pressure air flooding, elaborated the relationship between the LTO properties of crude oil and the temperature, pressure, and water saturation of the reservoir, and analyzed the differences in LTO oxygen consumption and oil components under different reaction conditions. In addition, combined with the air flooding physical simulation experiment, the dynamic evolution law of recovery rate in the air flooding process was revealed. Findings from this inquiry indicate that an escalation in the oxidation temperature significantly amplifies the oxygen incorporation reaction within the crude oil matrix. This augmentation in oxidative conditions leads to an uptick in oxygen consumption, which subsequently precipitates a reduction in the lighter fractions of the oxidized oil while enriching its heavier components. Elevated pressures were found to enhance the propensity for the amalgamation of unstable hydrocarbons with oxygen, fostering comprehensive and heterogeneous oxidation reactions. Notably, an excessive presence of water was observed to detrimentally affect the thermal efficacy of crude oil oxidation processes. In the context of low-permeability reservoirs, air injection techniques have emerged as superior in effectuating oil displacement, although an increase in injection pressures has been associated with the phenomenon of gas channeling. Interestingly, adopting a sequential strategy of initiating water flooding before air flooding facilitated the conveyance of high-pressure air via established flushing channels, although it appeared to attenuate the intensity of crude oil oxidation, culminating in an oil recovery efficiency peaking at 51%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Earth Science
Frontiers in Earth Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
3.50
自引率
10.30%
发文量
2076
审稿时长
12 weeks
期刊介绍: Frontiers in Earth Science is an open-access journal that aims to bring together and publish on a single platform the best research dedicated to our planet. This platform hosts the rapidly growing and continuously expanding domains in Earth Science, involving the lithosphere (including the geosciences spectrum), the hydrosphere (including marine geosciences and hydrology, complementing the existing Frontiers journal on Marine Science) and the atmosphere (including meteorology and climatology). As such, Frontiers in Earth Science focuses on the countless processes operating within and among the major spheres constituting our planet. In turn, the understanding of these processes provides the theoretical background to better use the available resources and to face the major environmental challenges (including earthquakes, tsunamis, eruptions, floods, landslides, climate changes, extreme meteorological events): this is where interdependent processes meet, requiring a holistic view to better live on and with our planet. The journal welcomes outstanding contributions in any domain of Earth Science. The open-access model developed by Frontiers offers a fast, efficient, timely and dynamic alternative to traditional publication formats. The journal has 20 specialty sections at the first tier, each acting as an independent journal with a full editorial board. The traditional peer-review process is adapted to guarantee fairness and efficiency using a thorough paperless process, with real-time author-reviewer-editor interactions, collaborative reviewer mandates to maximize quality, and reviewer disclosure after article acceptance. While maintaining a rigorous peer-review, this system allows for a process whereby accepted articles are published online on average 90 days after submission. General Commentary articles as well as Book Reviews in Frontiers in Earth Science are only accepted upon invitation.
期刊最新文献
Light-absorbing capacity of volcanic dust from Iceland and Chile Simulation and prediction of dynamic process of loess landslide and its impact damage to houses Uranium resources associated with phosphoric acid production and water desalination in Saudi Arabia Three-dimensional numerical simulation of factors affecting surface cracking in double-layer rock mass Organic matter enrichment model of Permian Capitanian-Changhsingian black shale in the intra-platform basin of Nanpanjiang basin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1