V. V. Zmushko, M. I. Polishchuk, A. N. Razin, A. A. Sinel’nikova, A. N. Shcherbakov
{"title":"模拟里氏-梅什科夫不稳定性的发展和向发达湍流的过渡","authors":"V. V. Zmushko, M. I. Polishchuk, A. N. Razin, A. A. Sinel’nikova, A. N. Shcherbakov","doi":"10.1134/S0015462824600317","DOIUrl":null,"url":null,"abstract":"<p>A criterion for estimating the instant of transition from the stage of development of the Richtmyer–Meshkov instability to developed turbulence on rough contact interfaces of layered gas systems is proposed. A number of laboratory experiments are simulated. In the first series of experiments, the Richtmyer–Meshkov instability arises on two contact interfaces of a thin gas layer after passage of a shock wave. In the experiments, a thin layer (corrugated gas curtain) is formed by pumping a heavy gas (SF<sub>6</sub>) through a nozzle block across an air-filled shock tube. In the second series of experiments, the shock wave passes across the contact interface of two gases of different densities (air-SF<sub>6</sub> and He-SF<sub>6</sub> layerings) perturbed along a sinusoid. In this series of experiments, the end face of the tube is either connected to the atmosphere or closed by a rigid wall. Development of the Richtmyer–Meshkov instability and transition to turbulent mixing are simulated using the implicit large eddy (ILES) method by means of the MIMOZA technique. A comparison with the available experimental information is made.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"59 3","pages":"444 - 464"},"PeriodicalIF":1.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of the Development of Richtmyer–Meshkov Instability and Transition to Developed Turbulence\",\"authors\":\"V. V. Zmushko, M. I. Polishchuk, A. N. Razin, A. A. Sinel’nikova, A. N. Shcherbakov\",\"doi\":\"10.1134/S0015462824600317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A criterion for estimating the instant of transition from the stage of development of the Richtmyer–Meshkov instability to developed turbulence on rough contact interfaces of layered gas systems is proposed. A number of laboratory experiments are simulated. In the first series of experiments, the Richtmyer–Meshkov instability arises on two contact interfaces of a thin gas layer after passage of a shock wave. In the experiments, a thin layer (corrugated gas curtain) is formed by pumping a heavy gas (SF<sub>6</sub>) through a nozzle block across an air-filled shock tube. In the second series of experiments, the shock wave passes across the contact interface of two gases of different densities (air-SF<sub>6</sub> and He-SF<sub>6</sub> layerings) perturbed along a sinusoid. In this series of experiments, the end face of the tube is either connected to the atmosphere or closed by a rigid wall. Development of the Richtmyer–Meshkov instability and transition to turbulent mixing are simulated using the implicit large eddy (ILES) method by means of the MIMOZA technique. A comparison with the available experimental information is made.</p>\",\"PeriodicalId\":560,\"journal\":{\"name\":\"Fluid Dynamics\",\"volume\":\"59 3\",\"pages\":\"444 - 464\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0015462824600317\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0015462824600317","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Simulation of the Development of Richtmyer–Meshkov Instability and Transition to Developed Turbulence
A criterion for estimating the instant of transition from the stage of development of the Richtmyer–Meshkov instability to developed turbulence on rough contact interfaces of layered gas systems is proposed. A number of laboratory experiments are simulated. In the first series of experiments, the Richtmyer–Meshkov instability arises on two contact interfaces of a thin gas layer after passage of a shock wave. In the experiments, a thin layer (corrugated gas curtain) is formed by pumping a heavy gas (SF6) through a nozzle block across an air-filled shock tube. In the second series of experiments, the shock wave passes across the contact interface of two gases of different densities (air-SF6 and He-SF6 layerings) perturbed along a sinusoid. In this series of experiments, the end face of the tube is either connected to the atmosphere or closed by a rigid wall. Development of the Richtmyer–Meshkov instability and transition to turbulent mixing are simulated using the implicit large eddy (ILES) method by means of the MIMOZA technique. A comparison with the available experimental information is made.
期刊介绍:
Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.