CellContrast:通过深度对比学习重建单细胞 RNA 测序数据中的空间关系

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Patterns Pub Date : 2024-07-09 DOI:10.1016/j.patter.2024.101022
Shumin Li, Jiajun Ma, Tianyi Zhao, Yuran Jia, Bo Liu, Ruibang Luo, Yuanhua Huang
{"title":"CellContrast:通过深度对比学习重建单细胞 RNA 测序数据中的空间关系","authors":"Shumin Li, Jiajun Ma, Tianyi Zhao, Yuran Jia, Bo Liu, Ruibang Luo, Yuanhua Huang","doi":"10.1016/j.patter.2024.101022","DOIUrl":null,"url":null,"abstract":"<p>A vast amount of single-cell RNA sequencing (SC) data have been accumulated via various studies and consortiums, but the lack of spatial information limits its analysis of complex biological activities. To bridge this gap, we introduce CellContrast, a computational method for reconstructing spatial relationships among SC cells from spatial transcriptomics (ST) reference. By adopting a contrastive learning framework and training with ST data, CellContrast projects gene expressions into a hidden space where proximate cells share similar representation values. We performed extensive benchmarking on diverse platforms, including SeqFISH, Stereo-seq, 10X Visium, and MERSCOPE, on mouse embryo and human breast cells. The results reveal that CellContrast substantially outperforms other related methods, facilitating accurate spatial reconstruction of SC. We further demonstrate CellContrast’s utility by applying it to cell-type co-localization and cell-cell communication analysis with real-world SC samples, proving the recovered cell locations empower more discoveries and mitigate potential false positives.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"85 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CellContrast: Reconstructing spatial relationships in single-cell RNA sequencing data via deep contrastive learning\",\"authors\":\"Shumin Li, Jiajun Ma, Tianyi Zhao, Yuran Jia, Bo Liu, Ruibang Luo, Yuanhua Huang\",\"doi\":\"10.1016/j.patter.2024.101022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A vast amount of single-cell RNA sequencing (SC) data have been accumulated via various studies and consortiums, but the lack of spatial information limits its analysis of complex biological activities. To bridge this gap, we introduce CellContrast, a computational method for reconstructing spatial relationships among SC cells from spatial transcriptomics (ST) reference. By adopting a contrastive learning framework and training with ST data, CellContrast projects gene expressions into a hidden space where proximate cells share similar representation values. We performed extensive benchmarking on diverse platforms, including SeqFISH, Stereo-seq, 10X Visium, and MERSCOPE, on mouse embryo and human breast cells. The results reveal that CellContrast substantially outperforms other related methods, facilitating accurate spatial reconstruction of SC. We further demonstrate CellContrast’s utility by applying it to cell-type co-localization and cell-cell communication analysis with real-world SC samples, proving the recovered cell locations empower more discoveries and mitigate potential false positives.</p>\",\"PeriodicalId\":36242,\"journal\":{\"name\":\"Patterns\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Patterns\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.patter.2024.101022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.101022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

各种研究和联盟积累了大量单细胞 RNA 测序(SC)数据,但由于缺乏空间信息,限制了对复杂生物活动的分析。为了弥补这一缺陷,我们引入了 CellContrast,这是一种从空间转录组学(ST)参考中重建单细胞RNA测序细胞间空间关系的计算方法。通过采用对比学习框架和 ST 数据训练,CellContrast 将基因表达投射到一个隐藏空间,在这个空间中,相近的细胞具有相似的表示值。我们在小鼠胚胎和人类乳腺细胞的 SeqFISH、Stereo-seq、10X Visium 和 MERSCOPE 等不同平台上进行了广泛的基准测试。结果表明,CellContrast 大大优于其他相关方法,有助于准确重建 SC 空间。我们将 CellContrast 应用于实际 SC 样本的细胞类型共定位和细胞间通讯分析,进一步证明了 CellContrast 的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CellContrast: Reconstructing spatial relationships in single-cell RNA sequencing data via deep contrastive learning

A vast amount of single-cell RNA sequencing (SC) data have been accumulated via various studies and consortiums, but the lack of spatial information limits its analysis of complex biological activities. To bridge this gap, we introduce CellContrast, a computational method for reconstructing spatial relationships among SC cells from spatial transcriptomics (ST) reference. By adopting a contrastive learning framework and training with ST data, CellContrast projects gene expressions into a hidden space where proximate cells share similar representation values. We performed extensive benchmarking on diverse platforms, including SeqFISH, Stereo-seq, 10X Visium, and MERSCOPE, on mouse embryo and human breast cells. The results reveal that CellContrast substantially outperforms other related methods, facilitating accurate spatial reconstruction of SC. We further demonstrate CellContrast’s utility by applying it to cell-type co-localization and cell-cell communication analysis with real-world SC samples, proving the recovered cell locations empower more discoveries and mitigate potential false positives.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
期刊最新文献
Data-knowledge co-driven innovations in engineering and management. Integration of large language models and federated learning. Decorrelative network architecture for robust electrocardiogram classification. Best holdout assessment is sufficient for cancer transcriptomic model selection. The recent Physics and Chemistry Nobel Prizes, AI, and the convergence of knowledge fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1