Muhammad Roman, Rui Cui, Jinzhan Yuan, Michal Hejcman, Lijun Liu
{"title":"磷肥对铜污染土壤中槿麻的生长生理和铜吸收的影响","authors":"Muhammad Roman, Rui Cui, Jinzhan Yuan, Michal Hejcman, Lijun Liu","doi":"10.1007/s10725-024-01185-3","DOIUrl":null,"url":null,"abstract":"<p>Copper (Cu) contamination in agricultural soils is one of the health risks, due to its translocation to humans through the food chain. Therefore, optimized nutrient application is required to achieve higher yields with reduced Cu uptake, ensuring food security. One way to reduce soil contamination is phytoremediation. Phosphorus (P) application decreases oxidative stress, improves plant growth, and facilitates the phytoremediation potential of plants. This study investigated the phytoremediation potential of kenaf (<i>Hibiscus cannabinus</i>) with P fertilizer in Cu-polluted mining soil (2375 mg kg<sup>− 1</sup> Cu) of Hubei, China. A pot experiment was conducted to assess the effect of P on kenaf growth, gas exchange traits, antioxidant enzyme activities, Cu uptake, and soil health under different levels of P (0, 10, 15, and 20 g/15 kg of soil). P<sub>15</sub> significantly improved plant growth by increasing plant height, stem diameter, number of leaves, and SPAD (relative chlorophyll index). Application of P improved net photosynthesis (Pn), transpiration rate (Tr), stomatal conductance (gs), and intercellular CO<sub>2</sub> concentration (Ci) while decreasing oxidative stress in kenaf leaves up to P<sub>15</sub>. Contradictory, a high concentration of P<sub>20</sub> was toxic to the morphological and physiological traits of the plants. Maximum Cu uptake was observed at P<sub>20</sub> in roots, leaves, stems, and fibers. Additionally, P application significantly decreased soil pH and bulk density. Our findings revealed the effectiveness of P application in improving kenaf growth in heavily Cu-polluted mining soil.</p>","PeriodicalId":20412,"journal":{"name":"Plant Growth Regulation","volume":"37 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of phosphorus fertilizer on kenaf growth physiology and copper absorption in copper-contaminated soil\",\"authors\":\"Muhammad Roman, Rui Cui, Jinzhan Yuan, Michal Hejcman, Lijun Liu\",\"doi\":\"10.1007/s10725-024-01185-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Copper (Cu) contamination in agricultural soils is one of the health risks, due to its translocation to humans through the food chain. Therefore, optimized nutrient application is required to achieve higher yields with reduced Cu uptake, ensuring food security. One way to reduce soil contamination is phytoremediation. Phosphorus (P) application decreases oxidative stress, improves plant growth, and facilitates the phytoremediation potential of plants. This study investigated the phytoremediation potential of kenaf (<i>Hibiscus cannabinus</i>) with P fertilizer in Cu-polluted mining soil (2375 mg kg<sup>− 1</sup> Cu) of Hubei, China. A pot experiment was conducted to assess the effect of P on kenaf growth, gas exchange traits, antioxidant enzyme activities, Cu uptake, and soil health under different levels of P (0, 10, 15, and 20 g/15 kg of soil). P<sub>15</sub> significantly improved plant growth by increasing plant height, stem diameter, number of leaves, and SPAD (relative chlorophyll index). Application of P improved net photosynthesis (Pn), transpiration rate (Tr), stomatal conductance (gs), and intercellular CO<sub>2</sub> concentration (Ci) while decreasing oxidative stress in kenaf leaves up to P<sub>15</sub>. Contradictory, a high concentration of P<sub>20</sub> was toxic to the morphological and physiological traits of the plants. Maximum Cu uptake was observed at P<sub>20</sub> in roots, leaves, stems, and fibers. Additionally, P application significantly decreased soil pH and bulk density. Our findings revealed the effectiveness of P application in improving kenaf growth in heavily Cu-polluted mining soil.</p>\",\"PeriodicalId\":20412,\"journal\":{\"name\":\"Plant Growth Regulation\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Growth Regulation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10725-024-01185-3\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Growth Regulation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10725-024-01185-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Effects of phosphorus fertilizer on kenaf growth physiology and copper absorption in copper-contaminated soil
Copper (Cu) contamination in agricultural soils is one of the health risks, due to its translocation to humans through the food chain. Therefore, optimized nutrient application is required to achieve higher yields with reduced Cu uptake, ensuring food security. One way to reduce soil contamination is phytoremediation. Phosphorus (P) application decreases oxidative stress, improves plant growth, and facilitates the phytoremediation potential of plants. This study investigated the phytoremediation potential of kenaf (Hibiscus cannabinus) with P fertilizer in Cu-polluted mining soil (2375 mg kg− 1 Cu) of Hubei, China. A pot experiment was conducted to assess the effect of P on kenaf growth, gas exchange traits, antioxidant enzyme activities, Cu uptake, and soil health under different levels of P (0, 10, 15, and 20 g/15 kg of soil). P15 significantly improved plant growth by increasing plant height, stem diameter, number of leaves, and SPAD (relative chlorophyll index). Application of P improved net photosynthesis (Pn), transpiration rate (Tr), stomatal conductance (gs), and intercellular CO2 concentration (Ci) while decreasing oxidative stress in kenaf leaves up to P15. Contradictory, a high concentration of P20 was toxic to the morphological and physiological traits of the plants. Maximum Cu uptake was observed at P20 in roots, leaves, stems, and fibers. Additionally, P application significantly decreased soil pH and bulk density. Our findings revealed the effectiveness of P application in improving kenaf growth in heavily Cu-polluted mining soil.
期刊介绍:
Plant Growth Regulation is an international journal publishing original articles on all aspects of plant growth and development. We welcome manuscripts reporting question-based research using hormonal, physiological, environmental, genetical, biophysical, developmental or molecular approaches to the study of plant growth regulation.
Emphasis is placed on papers presenting the results of original research. Occasional reviews on important topics will also be welcome. All contributions must be in English.