{"title":"玻璃纤维和矿物纤维绝缘材料在高温下的收缩特性","authors":"Linbo Zhang, Mohamed A. Sultan","doi":"10.1016/j.firesaf.2024.104210","DOIUrl":null,"url":null,"abstract":"<div><p>The fire resistance of building assemblies can be determined through testing or by numerical modelling. As testing of building assemblies is expensive and time-consuming, the development of numerical modelling methods is gaining momentum. One of the challenges in modelling assemblies’ thermal performance is insulation dimensional shrinkage at elevated temperatures. To address this challenge, this paper presents a comprehensive experimental investigation into the shrinkage of glass and mineral fibre insulation materials under elevated temperature conditions. Initially, a series of tests was conducted to establish the temperature range within which significant shrinkage occurs for both types of insulation. Then, visual observations and measurements were recorded to assess the physical and dimensional changes of the insulation materials within the identified temperature range for shrinkage, indicating distinct responses of glass and mineral fibre insulation to thermal exposure. Compared to width and length variations, thickness reduction in insulation was more significant. Overall, the insulation thickness decreased as the exposed temperature increased. The glass fibre insulation completely melted at 710<!--> <!-->°C, while mineral fibre insulation disintegrated at 1000<!--> <!-->°C. In addition, empirical equations were derived to assess the thickness variations of these insulations at elevated temperatures, which can greatly enhance the accuracy of future thermal models under fire scenarios. Lastly, potential areas for future research are identified.</p></div>","PeriodicalId":50445,"journal":{"name":"Fire Safety Journal","volume":"148 ","pages":"Article 104210"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shrinkage characteristics of glass and mineral fibre insulation materials at elevated temperatures\",\"authors\":\"Linbo Zhang, Mohamed A. Sultan\",\"doi\":\"10.1016/j.firesaf.2024.104210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The fire resistance of building assemblies can be determined through testing or by numerical modelling. As testing of building assemblies is expensive and time-consuming, the development of numerical modelling methods is gaining momentum. One of the challenges in modelling assemblies’ thermal performance is insulation dimensional shrinkage at elevated temperatures. To address this challenge, this paper presents a comprehensive experimental investigation into the shrinkage of glass and mineral fibre insulation materials under elevated temperature conditions. Initially, a series of tests was conducted to establish the temperature range within which significant shrinkage occurs for both types of insulation. Then, visual observations and measurements were recorded to assess the physical and dimensional changes of the insulation materials within the identified temperature range for shrinkage, indicating distinct responses of glass and mineral fibre insulation to thermal exposure. Compared to width and length variations, thickness reduction in insulation was more significant. Overall, the insulation thickness decreased as the exposed temperature increased. The glass fibre insulation completely melted at 710<!--> <!-->°C, while mineral fibre insulation disintegrated at 1000<!--> <!-->°C. In addition, empirical equations were derived to assess the thickness variations of these insulations at elevated temperatures, which can greatly enhance the accuracy of future thermal models under fire scenarios. Lastly, potential areas for future research are identified.</p></div>\",\"PeriodicalId\":50445,\"journal\":{\"name\":\"Fire Safety Journal\",\"volume\":\"148 \",\"pages\":\"Article 104210\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire Safety Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0379711224001231\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Safety Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379711224001231","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Shrinkage characteristics of glass and mineral fibre insulation materials at elevated temperatures
The fire resistance of building assemblies can be determined through testing or by numerical modelling. As testing of building assemblies is expensive and time-consuming, the development of numerical modelling methods is gaining momentum. One of the challenges in modelling assemblies’ thermal performance is insulation dimensional shrinkage at elevated temperatures. To address this challenge, this paper presents a comprehensive experimental investigation into the shrinkage of glass and mineral fibre insulation materials under elevated temperature conditions. Initially, a series of tests was conducted to establish the temperature range within which significant shrinkage occurs for both types of insulation. Then, visual observations and measurements were recorded to assess the physical and dimensional changes of the insulation materials within the identified temperature range for shrinkage, indicating distinct responses of glass and mineral fibre insulation to thermal exposure. Compared to width and length variations, thickness reduction in insulation was more significant. Overall, the insulation thickness decreased as the exposed temperature increased. The glass fibre insulation completely melted at 710 °C, while mineral fibre insulation disintegrated at 1000 °C. In addition, empirical equations were derived to assess the thickness variations of these insulations at elevated temperatures, which can greatly enhance the accuracy of future thermal models under fire scenarios. Lastly, potential areas for future research are identified.
期刊介绍:
Fire Safety Journal is the leading publication dealing with all aspects of fire safety engineering. Its scope is purposefully wide, as it is deemed important to encourage papers from all sources within this multidisciplinary subject, thus providing a forum for its further development as a distinct engineering discipline. This is an essential step towards gaining a status equal to that enjoyed by the other engineering disciplines.