氧化石墨烯电极可对大脑星形胶质细胞中不同的钙信号进行电刺激

IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nature nanotechnology Pub Date : 2024-07-10 DOI:10.1038/s41565-024-01711-4
Roberta Fabbri, Alessandra Scidà, Emanuela Saracino, Giorgia Conte, Alessandro Kovtun, Andrea Candini, Denisa Kirdajova, Diletta Spennato, Valeria Marchetti, Chiara Lazzarini, Aikaterini Konstantoulaki, Paolo Dambruoso, Marco Caprini, Michele Muccini, Mauro Ursino, Miroslava Anderova, Emanuele Treossi, Roberto Zamboni, Vincenzo Palermo, Valentina Benfenati
{"title":"氧化石墨烯电极可对大脑星形胶质细胞中不同的钙信号进行电刺激","authors":"Roberta Fabbri, Alessandra Scidà, Emanuela Saracino, Giorgia Conte, Alessandro Kovtun, Andrea Candini, Denisa Kirdajova, Diletta Spennato, Valeria Marchetti, Chiara Lazzarini, Aikaterini Konstantoulaki, Paolo Dambruoso, Marco Caprini, Michele Muccini, Mauro Ursino, Miroslava Anderova, Emanuele Treossi, Roberto Zamboni, Vincenzo Palermo, Valentina Benfenati","doi":"10.1038/s41565-024-01711-4","DOIUrl":null,"url":null,"abstract":"Astrocytes are responsible for maintaining homoeostasis and cognitive functions through calcium signalling, a process that is altered in brain diseases. Current bioelectronic tools are designed to study neurons and are not suitable for controlling calcium signals in astrocytes. Here, we show that electrical stimulation of astrocytes using electrodes coated with graphene oxide and reduced graphene oxide induces respectively a slow response to calcium, mediated by external calcium influx, and a sharp one, exclusively due to calcium release from intracellular stores. Our results suggest that the different conductivities of the substrate influence the electric field at the cell–electrolyte or cell–material interfaces, favouring different signalling events in vitro and ex vivo. Patch-clamp, voltage-sensitive dye and calcium imaging data support the proposed model. In summary, we provide evidence of a simple tool to selectively control distinct calcium signals in brain astrocytes for straightforward investigations in neuroscience and bioelectronic medicine. Electrical stimulation of astrocytes using electrodes coated with graphene oxide and reduced graphene oxide can be used to trigger specific calcium signals.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":null,"pages":null},"PeriodicalIF":38.1000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41565-024-01711-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Graphene oxide electrodes enable electrical stimulation of distinct calcium signalling in brain astrocytes\",\"authors\":\"Roberta Fabbri, Alessandra Scidà, Emanuela Saracino, Giorgia Conte, Alessandro Kovtun, Andrea Candini, Denisa Kirdajova, Diletta Spennato, Valeria Marchetti, Chiara Lazzarini, Aikaterini Konstantoulaki, Paolo Dambruoso, Marco Caprini, Michele Muccini, Mauro Ursino, Miroslava Anderova, Emanuele Treossi, Roberto Zamboni, Vincenzo Palermo, Valentina Benfenati\",\"doi\":\"10.1038/s41565-024-01711-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Astrocytes are responsible for maintaining homoeostasis and cognitive functions through calcium signalling, a process that is altered in brain diseases. Current bioelectronic tools are designed to study neurons and are not suitable for controlling calcium signals in astrocytes. Here, we show that electrical stimulation of astrocytes using electrodes coated with graphene oxide and reduced graphene oxide induces respectively a slow response to calcium, mediated by external calcium influx, and a sharp one, exclusively due to calcium release from intracellular stores. Our results suggest that the different conductivities of the substrate influence the electric field at the cell–electrolyte or cell–material interfaces, favouring different signalling events in vitro and ex vivo. Patch-clamp, voltage-sensitive dye and calcium imaging data support the proposed model. In summary, we provide evidence of a simple tool to selectively control distinct calcium signals in brain astrocytes for straightforward investigations in neuroscience and bioelectronic medicine. Electrical stimulation of astrocytes using electrodes coated with graphene oxide and reduced graphene oxide can be used to trigger specific calcium signals.\",\"PeriodicalId\":18915,\"journal\":{\"name\":\"Nature nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":38.1000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41565-024-01711-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41565-024-01711-4\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41565-024-01711-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

星形胶质细胞负责通过钙信号维持体内平衡和认知功能,而这一过程在脑部疾病中会发生改变。目前的生物电子工具是为研究神经元而设计的,并不适合控制星形胶质细胞中的钙信号。在这里,我们发现,使用涂有氧化石墨烯和还原氧化石墨烯的电极对星形胶质细胞进行电刺激,可分别诱发由外部钙离子流入介导的缓慢钙离子反应和完全由细胞内钙离子释放引起的急剧钙离子反应。我们的研究结果表明,基底的不同电导率会影响细胞-电解质或细胞-材料界面的电场,从而有利于体外和体内的不同信号事件。膜片钳、电压敏感染料和钙成像数据都支持所提出的模型。总之,我们为神经科学和生物电子医学领域的直接研究提供了一种简单的工具,可以选择性地控制大脑星形胶质细胞中不同的钙信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graphene oxide electrodes enable electrical stimulation of distinct calcium signalling in brain astrocytes
Astrocytes are responsible for maintaining homoeostasis and cognitive functions through calcium signalling, a process that is altered in brain diseases. Current bioelectronic tools are designed to study neurons and are not suitable for controlling calcium signals in astrocytes. Here, we show that electrical stimulation of astrocytes using electrodes coated with graphene oxide and reduced graphene oxide induces respectively a slow response to calcium, mediated by external calcium influx, and a sharp one, exclusively due to calcium release from intracellular stores. Our results suggest that the different conductivities of the substrate influence the electric field at the cell–electrolyte or cell–material interfaces, favouring different signalling events in vitro and ex vivo. Patch-clamp, voltage-sensitive dye and calcium imaging data support the proposed model. In summary, we provide evidence of a simple tool to selectively control distinct calcium signals in brain astrocytes for straightforward investigations in neuroscience and bioelectronic medicine. Electrical stimulation of astrocytes using electrodes coated with graphene oxide and reduced graphene oxide can be used to trigger specific calcium signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature nanotechnology
Nature nanotechnology 工程技术-材料科学:综合
CiteScore
59.70
自引率
0.80%
发文量
196
审稿时长
4-8 weeks
期刊介绍: Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations. Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.
期刊最新文献
3D printed photonic crystals with a complete bandgap in the visible range Earth-abundant Li-ion cathode materials with nanoengineered microstructures Direct cytosolic delivery of siRNA via cell membrane fusion using cholesterol-enriched exosomes A cuproptosis nanocapsule for cancer radiotherapy Printing of 3D photonic crystals in titania with complete bandgap across the visible spectrum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1