永磁偏置电感器 - 概述

IF 5 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE open journal of power electronics Pub Date : 2024-07-09 DOI:10.1109/OJPEL.2024.3425605
Andres Revilla Aguilar;Stig Munk-Nielsen;Flemming Buus Bendixen;Ziwei Ouyang;Maeve Duffy;Hongbo Zhao
{"title":"永磁偏置电感器 - 概述","authors":"Andres Revilla Aguilar;Stig Munk-Nielsen;Flemming Buus Bendixen;Ziwei Ouyang;Maeve Duffy;Hongbo Zhao","doi":"10.1109/OJPEL.2024.3425605","DOIUrl":null,"url":null,"abstract":"This article provides a comprehensive overview of the state of the art in the field of permanent magnet biased inductors, (PMBIs). The theoretical benefits of PMBIs, operating in DC applications, were identified decades ago, in the late 1950’s. Compared with a non-biased inductor, a 100% linear biased PMBI, can achieve the same inductance and saturation current, while requiring only half of the core's cross-sectional area or half the number of turns. In practicality, achieving 100% biasing without introducing additional losses, or detrimental conditions for the permanent magnet's lifetime, becomes an important challenge and the development and achievements of PMBIs have been evolving until present days. Therefore, this overview paper, first introduces the basic background knowledge required for the development of PMBIs, including an overview of the design benefits of biasing, the possible design strategies, additional benefits and possibilities of over-biasing, and a brief introduction to permanent magnets, PMs. The historical evolution of the different biasing techniques, and the employed core and PM topologies, are analyzed and evaluated. The different physical prototype implementations found in the literature, and their operating characteristics, achievements, and limitations, are compiled and evaluated. Finally, the present challenges of PMBI implementation, and the future perspectives towards optimized development are summarized.","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10591423","citationCount":"0","resultStr":"{\"title\":\"Permanent Magnet Biased Inductors–An Overview\",\"authors\":\"Andres Revilla Aguilar;Stig Munk-Nielsen;Flemming Buus Bendixen;Ziwei Ouyang;Maeve Duffy;Hongbo Zhao\",\"doi\":\"10.1109/OJPEL.2024.3425605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article provides a comprehensive overview of the state of the art in the field of permanent magnet biased inductors, (PMBIs). The theoretical benefits of PMBIs, operating in DC applications, were identified decades ago, in the late 1950’s. Compared with a non-biased inductor, a 100% linear biased PMBI, can achieve the same inductance and saturation current, while requiring only half of the core's cross-sectional area or half the number of turns. In practicality, achieving 100% biasing without introducing additional losses, or detrimental conditions for the permanent magnet's lifetime, becomes an important challenge and the development and achievements of PMBIs have been evolving until present days. Therefore, this overview paper, first introduces the basic background knowledge required for the development of PMBIs, including an overview of the design benefits of biasing, the possible design strategies, additional benefits and possibilities of over-biasing, and a brief introduction to permanent magnets, PMs. The historical evolution of the different biasing techniques, and the employed core and PM topologies, are analyzed and evaluated. The different physical prototype implementations found in the literature, and their operating characteristics, achievements, and limitations, are compiled and evaluated. Finally, the present challenges of PMBI implementation, and the future perspectives towards optimized development are summarized.\",\"PeriodicalId\":93182,\"journal\":{\"name\":\"IEEE open journal of power electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10591423\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of power electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10591423/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of power electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10591423/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文全面概述了永磁偏置电感器(PMBIs)领域的技术现状。数十年前,即上世纪 50 年代末,永磁偏置电感器在直流应用中的理论优势就已显现。与非偏置电感器相比,100% 线性偏置 PMBI 可实现相同的电感和饱和电流,而所需的磁芯横截面积或匝数仅为后者的一半。在实际应用中,如何在不带来额外损耗或不利于永磁体寿命的情况下实现 100% 偏压成为一项重要挑战,而 PMBI 的发展和成就也一直在不断发展。因此,本综述文件首先介绍了开发 PMBI 所需的基本背景知识,包括偏压设计优势概述、可能的设计策略、过偏压的额外优势和可能性,以及永磁体简介。对不同偏压技术的历史演变、采用的磁芯和永磁体拓扑结构进行了分析和评估。对文献中发现的不同物理原型实施方案及其运行特性、成就和局限性进行了汇编和评估。最后,总结了目前 PMBI 实施所面临的挑战,以及未来优化发展的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Permanent Magnet Biased Inductors–An Overview
This article provides a comprehensive overview of the state of the art in the field of permanent magnet biased inductors, (PMBIs). The theoretical benefits of PMBIs, operating in DC applications, were identified decades ago, in the late 1950’s. Compared with a non-biased inductor, a 100% linear biased PMBI, can achieve the same inductance and saturation current, while requiring only half of the core's cross-sectional area or half the number of turns. In practicality, achieving 100% biasing without introducing additional losses, or detrimental conditions for the permanent magnet's lifetime, becomes an important challenge and the development and achievements of PMBIs have been evolving until present days. Therefore, this overview paper, first introduces the basic background knowledge required for the development of PMBIs, including an overview of the design benefits of biasing, the possible design strategies, additional benefits and possibilities of over-biasing, and a brief introduction to permanent magnets, PMs. The historical evolution of the different biasing techniques, and the employed core and PM topologies, are analyzed and evaluated. The different physical prototype implementations found in the literature, and their operating characteristics, achievements, and limitations, are compiled and evaluated. Finally, the present challenges of PMBI implementation, and the future perspectives towards optimized development are summarized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Low Frequency versus High Frequency PWM in Medium Voltage, High Power, Higher Level Inverters: THD, Harmonic Filtering, and Efficiency Comparison Reliability Enhancement of Isolated Full-Bridge DC-DC Power Converter for Fast Charging of Electric Vehicles Constant-Parameter Average-Value Model of Power-Electronic Voltage-Source Converters With Direct Interface in Electromagnetic Transient Simulators A Novel Reduced-Order Modeling Approach of a Grid-Tied Hybrid Photovoltaic–Wind Turbine–Battery Energy Storage System for Dynamic Stability Analysis Ultra-High Gain Quadratic DC-DC Topology Using Two-winding Coupled Inductors with Voltage Multiplier Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1