将生物质高效转化为高质量合成气的裂解/氧化/综合重整反应研究

IF 1.8 4区 工程技术 Q3 ENGINEERING, CHEMICAL Chemical Engineering & Technology Pub Date : 2024-07-06 DOI:10.1002/ceat.202400039
Wenqing Chen, Tao He, Suning Gu, Jingli Wu, Zhiqi Wang, Jinhu Wu
{"title":"将生物质高效转化为高质量合成气的裂解/氧化/综合重整反应研究","authors":"Wenqing Chen,&nbsp;Tao He,&nbsp;Suning Gu,&nbsp;Jingli Wu,&nbsp;Zhiqi Wang,&nbsp;Jinhu Wu","doi":"10.1002/ceat.202400039","DOIUrl":null,"url":null,"abstract":"<p>The advanced gasification technology of coal is mainly based on oxidation reaction and high temperature but is not suitable for biomass conversion. High tar and CO<sub>2</sub> content are the two main issues that affect the efficiency of biomass gasification. In order to deeply convert hydrocarbons/tar and CO<sub>2</sub> simultaneously, and enhance syngas yield, the cracking/partial oxidation/reforming reactions and their integrated reaction routes are investigated from an interrelated view. The effects of each reaction on the distribution of C/H elements in hydrocarbons/tar and syngas are illustrated. By cracking and oxidation reaction, the syngas yield can only reach 0.93 Nm<sup>3</sup> kg<sup>−1</sup>, about 58 % of the theoretical maximum value; a large proportion of residual C/H atoms existing in stable hydrocarbons/tar/CO<sub>2</sub>/H<sub>2</sub>O are not converted. Based on the concept of lattice O oxidation combined with dry reforming, it realizes syngas yield (CO+H<sub>2</sub>) 1.56 Nm<sup>3</sup> kg<sup>−1</sup> with 91.6 % concentration, demonstrating that tar/hydrocarbons and CO<sub>2</sub>/H<sub>2</sub>O are converted to syngas efficiently. The effects of [O]/C ratio on gas yield represent a synergistic coordination between lattice Os oxidation and catalytic reforming reaction. Oxidation-reforming is the optimum route for biomass conversion to high-quality syngas.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Cracking/Oxidation/Integrated Reforming Reaction for Efficient Conversion of Biomass to High-Quality Syngas\",\"authors\":\"Wenqing Chen,&nbsp;Tao He,&nbsp;Suning Gu,&nbsp;Jingli Wu,&nbsp;Zhiqi Wang,&nbsp;Jinhu Wu\",\"doi\":\"10.1002/ceat.202400039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The advanced gasification technology of coal is mainly based on oxidation reaction and high temperature but is not suitable for biomass conversion. High tar and CO<sub>2</sub> content are the two main issues that affect the efficiency of biomass gasification. In order to deeply convert hydrocarbons/tar and CO<sub>2</sub> simultaneously, and enhance syngas yield, the cracking/partial oxidation/reforming reactions and their integrated reaction routes are investigated from an interrelated view. The effects of each reaction on the distribution of C/H elements in hydrocarbons/tar and syngas are illustrated. By cracking and oxidation reaction, the syngas yield can only reach 0.93 Nm<sup>3</sup> kg<sup>−1</sup>, about 58 % of the theoretical maximum value; a large proportion of residual C/H atoms existing in stable hydrocarbons/tar/CO<sub>2</sub>/H<sub>2</sub>O are not converted. Based on the concept of lattice O oxidation combined with dry reforming, it realizes syngas yield (CO+H<sub>2</sub>) 1.56 Nm<sup>3</sup> kg<sup>−1</sup> with 91.6 % concentration, demonstrating that tar/hydrocarbons and CO<sub>2</sub>/H<sub>2</sub>O are converted to syngas efficiently. The effects of [O]/C ratio on gas yield represent a synergistic coordination between lattice Os oxidation and catalytic reforming reaction. Oxidation-reforming is the optimum route for biomass conversion to high-quality syngas.</p>\",\"PeriodicalId\":10083,\"journal\":{\"name\":\"Chemical Engineering & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202400039\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202400039","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

先进的煤气化技术主要基于氧化反应和高温,但并不适合生物质转化。焦油和二氧化碳含量高是影响生物质气化效率的两个主要问题。为了同时深度转化碳氢化合物/焦油和二氧化碳,提高合成气产量,从相互关联的角度研究了裂解/部分氧化/重整反应及其综合反应路线。说明了各反应对碳氢化合物/焦油和合成气中 C/H 元素分布的影响。通过裂解和氧化反应,合成气产量只能达到 0.93 Nm3 kg-1,约为理论最大值的 58%;稳定的碳氢化合物/焦油/CO2/H2O 中的大部分残余 C/H 原子没有被转化。基于晶格 O 氧化与干重整相结合的概念,实现了合成气产量(CO+H2)1.56 Nm3 kg-1,浓度为 91.6%,表明焦油/烃类和 CO2/H2O 被高效转化为合成气。[O]/C比率对产气量的影响代表了晶格Os氧化和催化重整反应之间的协同配合。氧化重整是生物质转化为高质量合成气的最佳途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on Cracking/Oxidation/Integrated Reforming Reaction for Efficient Conversion of Biomass to High-Quality Syngas

The advanced gasification technology of coal is mainly based on oxidation reaction and high temperature but is not suitable for biomass conversion. High tar and CO2 content are the two main issues that affect the efficiency of biomass gasification. In order to deeply convert hydrocarbons/tar and CO2 simultaneously, and enhance syngas yield, the cracking/partial oxidation/reforming reactions and their integrated reaction routes are investigated from an interrelated view. The effects of each reaction on the distribution of C/H elements in hydrocarbons/tar and syngas are illustrated. By cracking and oxidation reaction, the syngas yield can only reach 0.93 Nm3 kg−1, about 58 % of the theoretical maximum value; a large proportion of residual C/H atoms existing in stable hydrocarbons/tar/CO2/H2O are not converted. Based on the concept of lattice O oxidation combined with dry reforming, it realizes syngas yield (CO+H2) 1.56 Nm3 kg−1 with 91.6 % concentration, demonstrating that tar/hydrocarbons and CO2/H2O are converted to syngas efficiently. The effects of [O]/C ratio on gas yield represent a synergistic coordination between lattice Os oxidation and catalytic reforming reaction. Oxidation-reforming is the optimum route for biomass conversion to high-quality syngas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering & Technology
Chemical Engineering & Technology 工程技术-工程:化工
CiteScore
3.80
自引率
4.80%
发文量
315
审稿时长
5.5 months
期刊介绍: This is the journal for chemical engineers looking for first-hand information in all areas of chemical and process engineering. Chemical Engineering & Technology is: Competent with contributions written and refereed by outstanding professionals from around the world. Essential because it is an international forum for the exchange of ideas and experiences. Topical because its articles treat the very latest developments in the field.
期刊最新文献
Cover Picture: Chem. Eng. Technol. 11/2024 Editorial Board: Chem. Eng. Technol. 11/2024 Overview Contents: Chem. Eng. Technol. 11/2024 Photoelectrochemical Technology for Solar Fuel: Green Hydrogen, Carbon Dioxide Capture, and Ammonia Production Cover Picture: Chem. Eng. Technol. 10/2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1