Mohammad Malekan, Charlotte F. Ilvig, Ramin Aghababaei
{"title":"边缘半径和涂层厚度对铝铬镍涂层刀具切削性能的影响","authors":"Mohammad Malekan, Charlotte F. Ilvig, Ramin Aghababaei","doi":"10.1007/s12541-024-01074-9","DOIUrl":null,"url":null,"abstract":"<p>High-speed machining is a practical way to attain high productivity with lower costs. Under this condition, the tool geometry needs to be optimized to sustain high cutting forces and temperatures. The sharpness of the cutting edge and the coating thickness (CT) are two key parameters that affect the tool’s performance. While a sharp edge eases the cutting process, it causes a high stress concentration, which increases the wear rate and eventual edge fracture. In this study, we use a combination of finite element simulations and experimental testing to evaluate the effects of CT ( 1–3 μm), edge radius (<span>\\(r_{\\beta }\\)</span> , 6–15 μm), and coefficient of friction (<span>\\(\\upmu = 0 - 0.2\\)</span>) on the stress distribution at the cutting edge. Our simulations showed that the larger the CT, the higher the stress magnitude inside the coating, but the lower the maximum stress depth percentile. Considering an industrial case of cutting steel workpieces using AlCrN-coated tungsten carbide tools under given cutting parameters, our simulations suggested an optimum CT of 3 μm. By manufacturing a series of milling tools with different CTs and edge radii, we validated the simulation results using a set of well-controlled milling experiments. Finally, the edge radius should be selected considering the size of rake/flank angle mainly to control stress distribution over the cutting edge.</p>","PeriodicalId":14359,"journal":{"name":"International Journal of Precision Engineering and Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Edge Radius and Coating Thickness on the Cutting Performance of AlCrN-Coated Tool\",\"authors\":\"Mohammad Malekan, Charlotte F. Ilvig, Ramin Aghababaei\",\"doi\":\"10.1007/s12541-024-01074-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High-speed machining is a practical way to attain high productivity with lower costs. Under this condition, the tool geometry needs to be optimized to sustain high cutting forces and temperatures. The sharpness of the cutting edge and the coating thickness (CT) are two key parameters that affect the tool’s performance. While a sharp edge eases the cutting process, it causes a high stress concentration, which increases the wear rate and eventual edge fracture. In this study, we use a combination of finite element simulations and experimental testing to evaluate the effects of CT ( 1–3 μm), edge radius (<span>\\\\(r_{\\\\beta }\\\\)</span> , 6–15 μm), and coefficient of friction (<span>\\\\(\\\\upmu = 0 - 0.2\\\\)</span>) on the stress distribution at the cutting edge. Our simulations showed that the larger the CT, the higher the stress magnitude inside the coating, but the lower the maximum stress depth percentile. Considering an industrial case of cutting steel workpieces using AlCrN-coated tungsten carbide tools under given cutting parameters, our simulations suggested an optimum CT of 3 μm. By manufacturing a series of milling tools with different CTs and edge radii, we validated the simulation results using a set of well-controlled milling experiments. Finally, the edge radius should be selected considering the size of rake/flank angle mainly to control stress distribution over the cutting edge.</p>\",\"PeriodicalId\":14359,\"journal\":{\"name\":\"International Journal of Precision Engineering and Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Precision Engineering and Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12541-024-01074-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Precision Engineering and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12541-024-01074-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Effects of Edge Radius and Coating Thickness on the Cutting Performance of AlCrN-Coated Tool
High-speed machining is a practical way to attain high productivity with lower costs. Under this condition, the tool geometry needs to be optimized to sustain high cutting forces and temperatures. The sharpness of the cutting edge and the coating thickness (CT) are two key parameters that affect the tool’s performance. While a sharp edge eases the cutting process, it causes a high stress concentration, which increases the wear rate and eventual edge fracture. In this study, we use a combination of finite element simulations and experimental testing to evaluate the effects of CT ( 1–3 μm), edge radius (\(r_{\beta }\) , 6–15 μm), and coefficient of friction (\(\upmu = 0 - 0.2\)) on the stress distribution at the cutting edge. Our simulations showed that the larger the CT, the higher the stress magnitude inside the coating, but the lower the maximum stress depth percentile. Considering an industrial case of cutting steel workpieces using AlCrN-coated tungsten carbide tools under given cutting parameters, our simulations suggested an optimum CT of 3 μm. By manufacturing a series of milling tools with different CTs and edge radii, we validated the simulation results using a set of well-controlled milling experiments. Finally, the edge radius should be selected considering the size of rake/flank angle mainly to control stress distribution over the cutting edge.
期刊介绍:
The International Journal of Precision Engineering and Manufacturing accepts original contributions on all aspects of precision engineering and manufacturing. The journal specific focus areas include, but are not limited to:
- Precision Machining Processes
- Manufacturing Systems
- Robotics and Automation
- Machine Tools
- Design and Materials
- Biomechanical Engineering
- Nano/Micro Technology
- Rapid Prototyping and Manufacturing
- Measurements and Control
Surveys and reviews will also be planned in consultation with the Editorial Board.