基于下行物理层安全传输的自持分布式基站系统远程射频单元选择

IF 2.1 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Wireless Networks Pub Date : 2024-07-09 DOI:10.1007/s11276-024-03808-z
Xintong Zhou, Zhimin Huang, Kun Xiao
{"title":"基于下行物理层安全传输的自持分布式基站系统远程射频单元选择","authors":"Xintong Zhou, Zhimin Huang, Kun Xiao","doi":"10.1007/s11276-024-03808-z","DOIUrl":null,"url":null,"abstract":"<p>In the energy harvesting self-sustaining distributed base-station system (SS-DBS), the problem of optimal resource allocation for secure transmission at the downlink physical layer is studied, including the energy sharing mode, the power allocation, and the remote radio frequency unit (RRFU) selection. First, considering the existence of the eavesdropping user, an SS-DBS model, consisting of a baseband processing subsystem, an energy subsystem, and a radio frequency subsystem, is established for downlink secure transmission at the physical layer. Among the model, the remote radio frequency units are divided into secure remote radio frequency units that transmit secure information to the legitimate user and friendly cooperative remote radio frequency units that transmit artificial noise to interfere with the eavesdropping user. On this basis, a joint optimization problem of energy sharing, power allocation, and RRFU selection with the objective of maximizing the secure information rate of system is formulated. To solve this optimization problem, the problem is decomposed into an energy scheduling optimization subproblem and a RRFU selection optimization subproblem to solve separately. Through mathematical analysis and solution, the condition for the SS-DBS to adopt the partial energy sharing mode or the full energy sharing mode, the optimal power allocation of the RRFUs, and the RRFU selection algorithm for secure transmission at the physical layer of the SS-DBS downlink are obtained. Finally, Monte Carlo simulation is carried out and the simulation results verify the validity of the model and also show that the proposed algorithm has superior performance in terms of secure information rate and secure energy efficiency.</p>","PeriodicalId":23750,"journal":{"name":"Wireless Networks","volume":"71 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remote radio frequency unit selection of self-sustaining distributed base-station system based on downlink physical layer secure transmission\",\"authors\":\"Xintong Zhou, Zhimin Huang, Kun Xiao\",\"doi\":\"10.1007/s11276-024-03808-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the energy harvesting self-sustaining distributed base-station system (SS-DBS), the problem of optimal resource allocation for secure transmission at the downlink physical layer is studied, including the energy sharing mode, the power allocation, and the remote radio frequency unit (RRFU) selection. First, considering the existence of the eavesdropping user, an SS-DBS model, consisting of a baseband processing subsystem, an energy subsystem, and a radio frequency subsystem, is established for downlink secure transmission at the physical layer. Among the model, the remote radio frequency units are divided into secure remote radio frequency units that transmit secure information to the legitimate user and friendly cooperative remote radio frequency units that transmit artificial noise to interfere with the eavesdropping user. On this basis, a joint optimization problem of energy sharing, power allocation, and RRFU selection with the objective of maximizing the secure information rate of system is formulated. To solve this optimization problem, the problem is decomposed into an energy scheduling optimization subproblem and a RRFU selection optimization subproblem to solve separately. Through mathematical analysis and solution, the condition for the SS-DBS to adopt the partial energy sharing mode or the full energy sharing mode, the optimal power allocation of the RRFUs, and the RRFU selection algorithm for secure transmission at the physical layer of the SS-DBS downlink are obtained. Finally, Monte Carlo simulation is carried out and the simulation results verify the validity of the model and also show that the proposed algorithm has superior performance in terms of secure information rate and secure energy efficiency.</p>\",\"PeriodicalId\":23750,\"journal\":{\"name\":\"Wireless Networks\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wireless Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11276-024-03808-z\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wireless Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11276-024-03808-z","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在能量收集自持分布式基站系统(SS-DBS)中,研究了下行物理层安全传输的最优资源分配问题,包括能量共享模式、功率分配和远程射频单元(RRFU)选择。首先,考虑到窃听用户的存在,建立了由基带处理子系统、能量子系统和射频子系统组成的 SS-DBS 模型,用于下行链路物理层的安全传输。在该模型中,远程射频单元分为向合法用户传输安全信息的安全远程射频单元和发射人工噪音干扰窃听用户的友好合作远程射频单元。在此基础上,以系统安全信息速率最大化为目标,提出了能量共享、功率分配和远程射频单元选择的联合优化问题。为解决该优化问题,将问题分解为能量调度优化子问题和 RRFU 选择优化子问题,分别求解。通过数学分析和求解,得到了 SS-DBS 采用部分能量共享模式或完全能量共享模式的条件、RRFU 的最优功率分配以及 SS-DBS 下行链路物理层安全传输的 RRFU 选择算法。最后,进行了蒙特卡罗仿真,仿真结果验证了模型的正确性,并表明所提出的算法在安全信息速率和安全能效方面具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Remote radio frequency unit selection of self-sustaining distributed base-station system based on downlink physical layer secure transmission

In the energy harvesting self-sustaining distributed base-station system (SS-DBS), the problem of optimal resource allocation for secure transmission at the downlink physical layer is studied, including the energy sharing mode, the power allocation, and the remote radio frequency unit (RRFU) selection. First, considering the existence of the eavesdropping user, an SS-DBS model, consisting of a baseband processing subsystem, an energy subsystem, and a radio frequency subsystem, is established for downlink secure transmission at the physical layer. Among the model, the remote radio frequency units are divided into secure remote radio frequency units that transmit secure information to the legitimate user and friendly cooperative remote radio frequency units that transmit artificial noise to interfere with the eavesdropping user. On this basis, a joint optimization problem of energy sharing, power allocation, and RRFU selection with the objective of maximizing the secure information rate of system is formulated. To solve this optimization problem, the problem is decomposed into an energy scheduling optimization subproblem and a RRFU selection optimization subproblem to solve separately. Through mathematical analysis and solution, the condition for the SS-DBS to adopt the partial energy sharing mode or the full energy sharing mode, the optimal power allocation of the RRFUs, and the RRFU selection algorithm for secure transmission at the physical layer of the SS-DBS downlink are obtained. Finally, Monte Carlo simulation is carried out and the simulation results verify the validity of the model and also show that the proposed algorithm has superior performance in terms of secure information rate and secure energy efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wireless Networks
Wireless Networks 工程技术-电信学
CiteScore
7.70
自引率
3.30%
发文量
314
审稿时长
5.5 months
期刊介绍: The wireless communication revolution is bringing fundamental changes to data networking, telecommunication, and is making integrated networks a reality. By freeing the user from the cord, personal communications networks, wireless LAN''s, mobile radio networks and cellular systems, harbor the promise of fully distributed mobile computing and communications, any time, anywhere. Focusing on the networking and user aspects of the field, Wireless Networks provides a global forum for archival value contributions documenting these fast growing areas of interest. The journal publishes refereed articles dealing with research, experience and management issues of wireless networks. Its aim is to allow the reader to benefit from experience, problems and solutions described.
期刊最新文献
An EEG signal-based music treatment system for autistic children using edge computing devices A DV-Hop localization algorithm corrected based on multi-strategy sparrow algorithm in sea-surface wireless sensor networks Multi-Layer Collaborative Federated Learning architecture for 6G Open RAN Cloud-edge collaboration-based task offloading strategy in railway IoT for intelligent detection Exploiting data transmission for route discoveries in mobile ad hoc networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1